Initially on a notepad only one character 'A' is present. You can perform two operations on this notepad for each step:
Copy All
: You can copy all the characters present on the notepad (partial copy is not allowed).Paste
: You can paste the characters which are copied last time.
Given a number n
. You have to get exactly n
'A' on the notepad by performing the minimum number of steps permitted. Output the minimum number of steps to get n
'A'.
Example 1:
Input: 3 Output: 3 Explanation: Intitally, we have one character 'A'. In step 1, we use Copy All operation. In step 2, we use Paste operation to get 'AA'. In step 3, we use Paste operation to get 'AAA'.
Note:
- The
n
will be in the range [1, 1000].
这道题是典型的递归题啊。
我的思路是,要得到 n 个 A,必然要先得到 n 的整数除数个A ,然后再粘贴而来。比如说要得到 18个A 的最小步数。
可以是:先得到 9个A 的最小步数,再复制 粘贴1次。
也可以是:先得到 6个A 的最小步数,再复制 粘贴2次。
也可以是:先得到 3个A 的最小步数,再复制 粘贴5次。等等等等。
public int minSteps(int n) {
int[] memo=new int[n+1];
memo[1]=0;
return helper(n, memo);
}
public int helper(int n,int[] memo){
if(n==1||memo[n]>0){ //因为memo[1]=0
return memo[n];
}
memo[n]=n;
for(int i=2;i<=n/2;i++){
if(n%i==0){
int times=n/i;
//复制1次+粘贴(times-1)次
memo[n]=Math.min(memo[n], helper(i, memo)+times);
}
}
return memo[n];
}
我的方法中只求了所有能整除 n 的数的 minSteps,还有大神用的传统 DP,从 2~n 的数都求了一遍。
public int minSteps(int n) {
int[] dp = new int[n+1];
for (int i = 2; i <= n; i++) {
dp[i] = i;
for (int j = i-1; j > 1; j--) {
if (i % j == 0) {
dp[i] = dp[j] + (i/j);
break;
}
}
}
return dp[n];
}
我们先算出前几个数的结果:
1: 0
2: 2
3: 3
4: 4
5: 5
6: 5
7: 7
8: 6
9: 6
10: 7
11: 11
12: 7
13: 13
14: 9
15: 8
现在,让我们举例:
Eg: n=6
To get 6, we need to copy 3 'A's two time. (2)
To get 3 'A's, copy the 1 'A' three times. (3)
So the answer for 6 is 5
Now, take n=9.
We need the lowest number just before 9 such that (9% number =0). So the lowest number is 3.
So 9%3=0. We need to copy 3 'A's three times to get 9. (3)
For getting 3 'A's, we need to copy 1 'A' three times. (3)
So the answer is 6
Finally to analyse the below code, take n=81.
To get 81 we check
if (81 % 2 ==0) No
if (81 % 3 ==0) Yes
So we need to copy 81/3 = 27 'A's three times (3)
Now to get 27 'A's, we need to copy 27/3= 9 'A's three times (3)
To get 9 'A's, we need to copy 9/3=3 'A's three times (3)
And to get 3 'A's, we need to copy 3/3=1 'A's three times (3)
Final answer is 3+3+3+3 = 12
Last Example, n=18
18/2 = 9 Copy 9 'A's 2 times (2)
9/3=3 Copy 3 'A's 3 times (3)
3/3=1 Copy 1'A's 3 times (3)
Answer: 2+3+3= 8
public int minSteps(int n) {
int res = 0;
for(int i=2;i<=n;i++){
while(n%i == 0){
res+= i;
n=n/i;
}
}
return res;
}
最快的情形 发生在 当 n
一直在减少时,这个方法的时间复杂度几乎是 O(log(n))
比如,当 n = 1024
那么 n
将被 2
除,在 10
次除的循环后结束,这种情况会比 O(n)
DP 方法要快。
最慢的情形发生在 当 n
是大质数,或者是大质数的乘积时,比如 n = 997
不过这种情况比较少见。