OIの解釈

###### BZOJ 2243 SDOI 2011 染色 树链剖分

#include <cstdio>
#include <algorithm>
#define FOR(i,j,k) for(i=j;i<=k;i++)
#define rep(i,j,k) for(i=j;i<k;i++)
using namespace std;
typedef long long ll;
ll s=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;'0'<=ch&&ch<='9';ch=getchar())s=s*10+ch-'0';
return s*f;
}

const int N = 100005;

struct Line {
int s, lc, rc;
Line operator & (const Line &b) const {
return (Line) { s + b.s - (rc == b.lc), lc, b.rc };
}
} nil;

Line val[N*4], lazy[N*4];

int cnt = 0, tot = 0, n, m;
int head[N], fa[N], son[N], dep[N], top[N], pos[N], sz[N], next[N*2], to[N*2], c[N], col[N];

void add(int u, int v) {
next[++cnt] = head[u]; head[u] = cnt; to[cnt] = v;
next[++cnt] = head[v]; head[v] = cnt; to[cnt] = u;
}

void dfs1(int x) {
sz[x] = 1; son[x] = 0;
for (int i = head[x]; i; i = next[i])
if (to[i] != fa[x]) {
fa[to[i]] = x; dep[to[i]] = dep[x] + 1;
dfs1(to[i]);
if (sz[to[i]] > sz[son[x]]) son[x] = to[i];
sz[x] += sz[to[i]];
}
}

void dfs2(int x, int t) {
col[pos[x] = ++tot] = c[x]; top[x] = t;
if (son[x] != 0) dfs2(son[x], t);
for (int i = head[x]; i; i = next[i])
if (to[i] != son[x] && to[i] != fa[x])
dfs2(to[i], to[i]);
}

Line build(int t, int l, int r) {
if (l == r) return val[t] = (Line) { 1, col[l], col[r] };
int mid = l + r >> 1;
return val[t] = build(t * 2, l, mid) & build(t * 2 + 1, mid + 1, r);
}

void pushdown(int t) {
if (lazy[t].s) {
val[t * 2] = val[t * 2 + 1] =
lazy[t * 2] = lazy[t * 2 + 1] = lazy[t];
lazy[t] = nil;
}
}

void modify(int t, int l, int r, int ql, int qr, const Line &x) {
if (l == ql && r == qr) {
val[t] = lazy[t] = x;
return;
}
pushdown(t);
int mid = l + r >> 1;
if (qr <= mid) modify(t * 2, l, mid, ql, qr, x);
else if (ql > mid) modify(t * 2 + 1, mid + 1, r, ql, qr, x);
else modify(t * 2, l, mid, ql, mid, x), modify(t * 2 + 1, mid + 1, r, mid + 1, qr, x);
val[t] = val[t * 2] & val[t * 2 + 1];
}

Line query(int t, int l, int r, int ql, int qr) {
if (l == ql && r == qr) return val[t];
pushdown(t);
int mid = l + r >> 1;
if (qr <= mid) return query(t * 2, l, mid, ql, qr);
else if (ql > mid) return query(t * 2 + 1, mid + 1, r, ql, qr);
else return query(t * 2, l, mid, ql, mid) & query(t * 2 + 1, mid + 1, r, mid + 1, qr);
}

int taskQ(int x, int y) {
Line lx = nil, ly = nil;
int fx = top[x], fy = top[y];
while (fx != fy) {
if (dep[fx] < dep[fy]) swap(fx, fy), swap(x, y), swap(lx, ly);
lx = query(1, 1, n, pos[fx], pos[x]) & lx;
x = fa[fx], fx = top[x];
}
if (dep[x] < dep[y]) swap(x, y), swap(lx, ly);
lx = query(1, 1, n, pos[y], pos[x]) & lx;
return lx.s + ly.s - (lx.lc == ly.lc);
}

void taskC(int x, int y, int colour) {
Line l = (Line) { 1, colour, colour };
int fx = top[x], fy = top[y];
while (fx != fy) {
if (dep[fx] < dep[fy]) swap(fx, fy), swap(x, y);
modify(1, 1, n, pos[fx], pos[x], l);
x = fa[fx], fx = top[x];
}
if (dep[x] > dep[y]) swap(x, y);
modify(1, 1, n, pos[x], pos[y], l);
}

int main() {
int i, x, y, z; char ch[5];
nil = (Line) { 0, 0, 0};
dfs1(1); dfs2(1, 1); build(1, 1, n);
FOR(i,1,m) {
scanf("%s", ch);
if (ch[0] == 'Q') {
} else {
x = read(), y = read(), z = read() + 1;
}
}
return 0;
}

## Description

1、将节点a到节点b路径上所有点都染成颜色c

2、询问节点a到节点b路径上的颜色段数量（连续相同颜色被认为是同一段），如“1122213段组成：“11、“222和“1

## Input

“C a b c”表示这是一个染色操作，把节点a到节点b路径上所有点（包括ab）都染成颜色c

“Q a b”表示这是一个询问操作，询问节点a到节点b（包括ab）路径上的颜色段数量。

6 5
2 2 1 2 1 1
1 2
1 3
2 4
2 5
2 6
Q 3 5
C 2 1 1
Q 3 5
C 5 1 2
Q 3 5

3
1
2

## Source

#### [BZOJ2243]SDOI2011染色|树链剖分|LCT

2015-04-19 20:27:12

#### bzoj2243 [SDOI2011]染色 (树链剖分+线段树)

2016-04-20 16:41:14

#### bzoj 2243 染色 树链剖分 好题！

2015-01-24 18:24:32

#### bzoj2243: [SDOI2011]染色

2015-06-22 20:22:14

#### 【JZOJ 4388】染色

2016-06-16 20:33:11

#### 【BZOJ 2243】【SDOI 2011】染色【树链剖分】

2017-03-28 16:40:22

#### [BZOJ4515][Sdoi2016]游戏（树链剖分）

2017-03-20 20:44:22

#### 洛谷 P2486 [SDOI2011]染色

2017-09-13 14:07:17

#### SDOI 2011 染色 树链剖分

2017-01-18 19:28:16

#### BZOJ 2243 染色 树链剖分

2014-08-23 16:06:47

## 不良信息举报

BZOJ 2243 SDOI 2011 染色 树链剖分