公交线路
小 Z 所在的城市有 N 个公交车站,排列在一条长为
N−1
公里的直线上,从左到右依次编号
为 1 到 N,相邻公交车站间的距离均为 1 公里。
作为公交车线路的规划者,小 Z 调查了市民的需求,决定按以下规则设计线路:
1. 设共有
K
辆公交车,则 1 到 K 号车站作为始发站,
2. 每个车站必须被一辆且仅一辆公交车经停(始发站和终点站也算被经停)。
3. 公交车只能从编号较小的车站驶向编号较大的车站。
4. 一辆公交车经停的相邻两个车站间的距离不得超过 P 公里。
注意“经停”是指经过并停车,因经过不一定会停车,故经停与经过是两个不同的概念。
在最终确定线路之前,小 Z 想知道有多少种满足要求的方案。由于答案可能很大,你只需求出
答案对 30031 取模的结果。
输入
输入文件只有一行,其中包含用空格隔开的三个正整数N, K,
P,分别表示公交车站数,公交车数,一辆公交车经停的相邻两个车站间的最大距离。输入的数据保证40%的数据满足N≤1000。100%的数据满足
1<N<109,1<P≤10,K<N,1<K≤P
输出
输出文件仅包含一个整数,表示满足要求的方案数对 30031 取模的结果。
样例
sample input 1
10 3 3
sample output 1
1
sample input 2
5 2 3
sample output 2
3
sample input 3
10 2 4
sample output 3
81
样例解释
样例一满足要求的方案只有1种,即:(1,4,7,10),(2,5,8),(3,6,9)。样例二满足要求的方案有3种,即:(1,3,5),(2,4);(1,3,4),(2,5)和(1,4),(2,3,5)。
题解
不看数据范围不会做系列。。
发现
P
很小但
令f[i][state]
表示从i开始连续P个位置的状态为state的方案数。那么状态转移方程很显然。然后初始状态是f[1][{1~k号车站存在,k+1~p号车站不存在}]
,至于目标状态,为了简化情况,定为f[n-k+1][{1~k号车站存在,k+1~p号车站不存在}]
,当然目标状态写到f[n-p+1]
也可以,代码稍长点就是了。。
#include <cstdio>
#include <cstring>
#define rep(i,j,k) for(int i=j;i<k;++i)
const int N = 155, P = 30031;
int s = 0, state[N];
struct Matrix {
int c[N][N];
Matrix(int x = 0) { memset(c, 0, sizeof c); rep(i,0,s) c[i][i] = x; }
friend Matrix operator* (const Matrix &a, const Matrix &b) {
Matrix c;
rep(k,0,s) rep(i,0,s) rep(j,0,s)
(c.c[i][j] += a.c[i][k] * b.c[k][j]) %= P;
return c;
}
friend Matrix operator^ (Matrix a, int b) {
Matrix c(1);
for (; b; b /= 2, a = a * a)
if (b & 1) c = c * a;
return c;
}
};
int count_bit(int x) {
int s = 0;
for (; x; x -= x & -x) ++s;
return s;
}
bool check(int x, int y) {
x >>= 1;
int t = x ^ y;
return t == (t & -t);
}
int main() {
int n, k, p, x;
scanf("%d%d%d", &n, &k, &p);
for(int i=1;i<(1<<p);i+=2) if (count_bit(i) == k) {
state[s] = i; if (i == (1 << k) - 1) x = s;
++s;
}
Matrix a, b;
rep(i,0,s) rep(j,0,s)
if (check(state[i], state[j]))
a.c[i][j] = 1;
b.c[0][x] = 1;
printf("%d", (b * (a ^ (n - k))).c[0][x]);
return 0;
}