BZOJ 2822 AHOI 2012 树屋阶梯 卡特兰数 高精度

75 篇文章 1 订阅
13 篇文章 0 订阅

用N个矩形填充N阶楼梯的方案数。

假设我们已知 0..N1 阶的楼梯的方案数 f(0..n1)
现在要推导到N。
我们枚举第N层的矩阵长度,有右端点必为右下顶点处,将1~N-1层分为2部分,即下方存在空位的部分(长度为i)与下方不存在空位(长度为N-i-1)(即被第N层矩阵填充)的部分。

显然不会存在矩阵跨左右两个部分。
然后下方不存在空位的情况即为 f(Ni1)
下方存在空位的部分可以看作,先按不存在空位的情况排好,然后与底面有接触的矩阵向下延伸一格(显然所有这里的情况都可以向下延伸)。
于是方案数就是 f(n)=n1i=0f(i)f(ni1)
即卡特兰数。

而且要上高精度。。

#include <cstdio>
#define FOR(i,j,k) for(i=j;i<=k;++i)
typedef long long ll;
const int N = 2000001;

struct BigInteger {
    int l, c[305];
    BigInteger() { l = 1; c[1] = 0; }
    void out() { for (int i = l; i; --i) printf("%d", c[i]); putchar('\n'); }
    friend BigInteger operator* (BigInteger a, int b) {
        int i;
        FOR(i,1,a.l) a.c[i] *= b;
        FOR(i,1,a.l) {
            a.c[i + 1] += a.c[i] / 10;
            a.c[i] %= 10;
            if (a.c[a.l + 1]) ++a.l;
        }
        return a;
    }
} ans;

int pri[N], dy[N], tot[N], vis[N];

int add(int x, int k) {
    for (; x != 1; x /= pri[dy[x]])
        tot[dy[x]] += k;
}

int main() {
    int n, c = 0, i, j;
    ans.c[1] = 1;
    scanf("%d", &n);
    FOR(i,2,2*n) {
        if (!vis[i]) {
            pri[++c] = i;
            dy[i] = c;
        }
        FOR(j,1,c) {
            if (pri[j] * i > 2 * n) break;
            vis[pri[j] * i] = 1;
            dy[pri[j] * i] = j;
            if(i % pri[j] == 0)
                break;
        }
    }
    FOR(i,n+2,2*n) add(i, 1);
    FOR(i,1,n) add(i, -1);
    FOR(i,1,c) while (tot[i]--) ans = ans * pri[i];
    ans.out();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值