CodeForces 724|模拟|贪心|扩展欧几里得|

49 篇文章 1 订阅
24 篇文章 1 订阅

724A Checking the Calendar

题目大意:题目感觉有点晦涩。。就是说给定不是闰年的某个月(1~11月)第一天是星期几,下个月的第一天是星期几,问你是否合法。

#include <cstdio>
int parseDay(char *ch) {
    if (ch[0] == 'm'                ) return 0;
    if (ch[0] == 't' && ch[1] == 'u') return 1;
    if (ch[0] == 'w'                ) return 2;
    if (ch[0] == 't' && ch[1] == 'h') return 3;
    if (ch[0] == 'f'                ) return 4;
    if (ch[0] == 's' && ch[1] == 'a') return 5;
    if (ch[0] == 's' && ch[1] == 'u') return 6;
    return -1;
}
char ch[16];
int main() {
    int a, b;
    scanf("%s", ch); a = parseDay(ch);
    scanf("%s", ch); b = parseDay(ch);
    if ((a + 31) % 7 == b || (a + 28) % 7 == b || (a + 30) % 7 == b)
        puts("YES");
    else
        puts("NO");
    return 0;
}

724B Batch Sort

题目大意:给出n行,每行m个数字的表,可以对每行执行一次任意交换两数的1操作以及一次交换两列数字的操作,问是否能将表恢复成每行1..m的形式。
题解:
若不存在3~4个错位的,那么一一行内交换即可。
若没有错位的,直接忽略即可(假定我们要交换列,再交换回来就可以恢复了)
显然我们可以随意调整交换列操作的操作顺序,因为行内交换的任意的两个数(如果只能交换相邻元素题目就复杂多了),所以我们优先处理交换列。
若存在1行中有3~4个错位的,那么必定交换了列(不存在5个及5个以上的,存在则NO)
那么交换列至多有6种情况( C24
如果多行存在3个错位的求交集(交集为空则NO)
交集元素个数至多为4(每行3~4错位的),那么枚举交换列可能的情况即可。
然后如果各行都不超过2个错位的就合法。
O(nm)
不过就n和m的范围。。。 O(nm3) 也没啥问题。。

#include <cstdio>
#include <algorithm>
using namespace std;
#define rep(i,j,k) for(i=j;i<k;++i)
const int N = 32;
int n, m;
int a[N][N], g[N][N], c[N];
int t[N], s[N], tl, sl = 0;
int checkOutMisplacement(int row, int *t) {
    int i, p = 0;
    rep(i,0,m) if (a[row][i] != i + 1) t[p++] = i;
    return p;
}

bool judge() {
    int i;
    rep(i,0,n) if (checkOutMisplacement(i, t) > 2) return false;
    return true;
}

int main() {
    int i, j, k, flag = false, must = false;
    scanf("%d%d", &n, &m);
    rep(i,0,n) rep(j,0,m) scanf("%d", &a[i][j]);
    rep(i,0,n) {
        c[i] = checkOutMisplacement(i, g[i]);
        if (c[i] > 4) return puts("NO"), 0;
        if (c[i] >= 3) must = true;
        if (!c[i]) continue;
        if (flag) {
            copy(s, s + sl, t); tl = sl;
            sl = set_intersection(t, t + tl, g[i], g[i] + c[i], s) - s;
        } else {
            copy(g[i], g[i] + c[i], s); sl = c[i];
            flag = true;
        }
    }
    if (!must) return puts(judge() ? "YES" : "NO"), 0;
    rep(i,0,sl) rep(j,i+1,sl) {
        rep(k,0,n) swap(a[k][s[i]], a[k][s[j]]);
        if (judge()) return puts("YES"), 0;
        rep(k,0,n) swap(a[k][s[i]], a[k][s[j]]);
    }
    return puts("NO"), 0;
}

724C

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 100010;
typedef pair<ll, ll> P;
ll mod(ll a, ll b, ll moder) {
    if (b <= 100)
        return a * b % MOD;
    return (a * (b % 100) % MOD + mod(a, b / 100, MOD) * 100 % MOD) % MOD;
}
ll power(ll a, ll b) {
    ll ans = 1;
    for (; b; b /= 2, a *= a)
        if (b & 1) ans *= a;
    return ans;
}
ll extgcd(ll a, ll b, ll &x, ll &y){
    if (b == 0) { x = 1; y = 0; return a; }
    ll ans = extgcd(b, a % b, x, y);
    ll p = y;
    y = x - a / b * y;
    x = p;
    if (x < 0)
    {
        y += (x / b - 1) * a;
        x -= (x / b - 1) * b;
    }
    if (x > b)
    {
        y += x / b * a;
        x %= b;
    }
    return ans;
}
P crt(P p1, P p2)
{
    ll x, y;
    if (p1.second == 0 || p2.second == 0)
        return make_pair(0, 0);
    if (p2.first < p1.first)
    {
        P p = p1;
        p1 = p2;
        p2 =p;
    }
    ll gcd = extended_euclid(p1.second, p2.second, x, y);
    if ((p2.first - p1.first) % gcd)
        return make_pair(0, 0);
    ll lcm = p1.second / gcd * p2.second;
    ll ans = (p2.first - p1.first) / gcd;
    ans = mod(ans, x, lcm);
    ans = mod(ans, p1.second, lcm);
    ans = (ans + p1.first) % lcm;
    return make_pair(ans, lcm); 
}
int main()
{
    int n, m, k, x, y;
    ll ans[N];
    for (int i = 0; i < N; i++)
        ans[i] = -1;
    scanf("%d%d%d", &n, &m, &k);
    for (int i = 0; i < k; i++)
    {
        scanf("%d%d", &x, &y);
        P solve = crt(make_pair(x, n), make_pair(y, m));
        if (solve.second && !(solve.first / n & 1) && !(solve.first / m & 1))
        {
            if (ans[i] == -1)
                ans[i] = solve.first;
            else
                ans[i] = min(ans[i], solve.first);
        }
        solve = crt(make_pair(n - x, n), make_pair(y, m));
        if (solve.second && (solve.first / n & 1) && !(solve.first / m & 1))
        {
            if (ans[i] == -1)
                ans[i] = solve.first;
            else
                ans[i] = min(ans[i], solve.first);
        }
        solve = crt(make_pair(x, n), make_pair(m - y, m));
        if (solve.second && !(solve.first / n & 1) && (solve.first / m & 1))
        {
            if (ans[i] == -1)
                ans[i] = solve.first;
            else
                ans[i] = min(ans[i], solve.first);
        }
        solve = crt(make_pair(n - x, n), make_pair(m - y, m));
        if (solve.second && (solve.first / n & 1) && (solve.first / m & 1))
        {
            if (ans[i] == -1)
                ans[i] = solve.first;
            else
                ans[i] = min(ans[i], solve.first);
        }
    }
    for (int i = 0; i < k; i++)
        printf("%I64d\n", ans[i]);
    return 0;
}

724D

题目大意:给出一个字符串,选出一些字符(集合为 C ),使得对任意的字串[j..j+m-1],存在cC,cstring[j..j+m1]。求集合C以字典序排成字符串,并使该字符串的字典序最小。
题解:注意到字符串的字典序最小时,如果已知字典序最大的字符k,那么[‘a’,k)的字符一定越多越好,即字符串里的所有的小于k的字符。对于k,一定是越少越好,要求我们选出一些字符,使得可以连接[‘a’,k)选中的区段(显然最终C中选中的字符间距不能超过m,这里认为间距不超过m的字符时连续的)。

#include <cstdio>
#include <cstring>
#define FOR(i,j,k) for(i=j;i<=k;++i)
#define id(i) ((i) - 'a')
const int N = 100005;
char s[N];
int p[N], c[N];
int main() {
    int m, n, i, j, k, now;
    scanf("%d%s", &m, s + 1);
    n = strlen(s + 1);
    for (char g = 'a'; g <= 'z'; ++g) {
        k = 0;
        FOR(i,1,n) if (s[i] <= g) p[++k] = i;
        p[++k] = n + 1;
        FOR(i,1,k) if (p[i] - p[i - 1] > m) goto hell;
        k = 0;
        FOR(i,1,n) if (s[i] < g) p[++k] = i, ++c[id(s[i])];
        p[++k] = n + 1;
        now = 0;
        FOR(i,1,k) {
            while (p[i] - now > m)
                for (j = now + m; j > now; --j)
                    if (s[j] == g) {
                        ++c[id(g)]; now = j; break;
                    }
            now = p[i];
        }
        for (char h = 'a'; h <= g; ++h)
            while (c[id(h)]) putchar(h), c[id(h)]--;
        break;
        hell: continue;
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值