简单讲RMQ->ST算法

简介

假如我们要求区间的最大值,怎么办(用一位数组搞定)?
没事,我们有RMQ。
今天略讲讲RMQ的ST算法,非常水,希望大家都能学会。

略讲

DP

我们设 Fi,j 表示 [i,i+2j1] 的最大值。
对于状态转移,我们可以将区间 [i,i+2j1] 看作 [i,i+2j11] [i+2j1,i+2j1] 两个区间。
状态转移方程显然为

Fi,j=max(Fi,j1,Fi+2j1,j1)

询问

对于询问,我们只需要 O(1) 解决。
我们只需要询问两端区间的最大值,设 M=log2rl+1 ,则这两端区间是 [l,r2M] [r2M+1,r]

代码

随手打的,随便看看,理解一下。

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int f[1005][10],i,j,m,l,r,n,q,ans;
int main()
{
    scanf("%d",&n);
    for(i=1;i<=n;i++) scanf("%d",&f[i][0]);
    for(j=0;j<=log2(n);j++)
        for(i=1;i<=n-(1<<j)+1;i++)
            f[i][j]=max(f[i][j-1],f[i+(1<<(j-1)),j-1]);
    scanf("%d",&q);
    for(i=1;i<=q;i++)
    {
        scanf("%d%d",&l,&r);
        m=log2(r-l+1);
        ans=max(f[l][m],f[r-(1<<m)+1,k]);
        printf("%d\n",ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值