JZOJ 5926. 【NOIP2018模拟10.25】naive 的图

该博客探讨了一道图论问题,涉及最短路径和最小生成树。博主分析了不同分数阶段的解题策略,包括通过合并连通块计算贡献、利用Kruskal重构树进行颜色枚举以及优化询问点的方法。文章包含关键概念、正解思路及代码实现。
摘要由CSDN通过智能技术生成

题目

给定一个带权无向图。每个点都有它的颜色。定义 D ( s , t ) D(s,t) D(s,t)为s到t中最短路径中边权最大的边的权值。
求所有满足 u &lt; v , ∣ c u − c v ∣ &lt; L u&lt;v,|c_u-c_v|&lt;L u<v,cucv<L D ( u , v ) D(u,v) D(u,v)之和。

关键字

(0)最短路径,一定对应着MST上的一条链。
①拆分询问
②动态删边转化成静态加边
③如果暴力中点的总数不多,暴力的复杂度不会很大。

正解

显然,不在MST上的边是无用的。
50分做法:关键字③,每次合并2个连通块,直接将连通块大小相乘,再乘以边权,就是这条边对答案的贡献了。
70分的做法:类比L=0,颜色不是很多,所以合并两个连通块时,暴力枚举配对的颜色即可。
颜色如何枚举?
考虑kruskal重构树,按照边权从小到大连边时,方点代表边,圆点代表原图中的点。
弄个bfs。一个连通块必然对应着kruskal重构树的dfs序中连续的一段。
100分的做法:颜色不能暴力枚举,那么考虑将哪些点作为询问点。显然选择小的连通块的点。
所以询问点的数量不会超过O(n log n)
拆分询问,然后询问dfs序上一段区间的点的个数。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define N 400010
#define M1 500010
#define M 6000010
#define LL long long
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
using namespace std;
struct Graph{
   
	int next[N],to[N],head[N],tot;
	int fa[N];
	void lb(int x,int y){
   
		to[++tot]=y;next[tot]=head[x];head[x]=tot;
	}
	void clear(){
   
		tot=0;
		memset(next,0,sizeof(next));
		memset(head,0,sizeof(head));
	}
}G;
int read(){
   
	int fh=0,rs=0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值