题目
给定一个带权无向图。每个点都有它的颜色。定义 D ( s , t ) D(s,t) D(s,t)为s到t中最短路径中边权最大的边的权值。
求所有满足 u < v , ∣ c u − c v ∣ < L u<v,|c_u-c_v|<L u<v,∣cu−cv∣<L的 D ( u , v ) D(u,v) D(u,v)之和。
关键字
(0)最短路径,一定对应着MST上的一条链。
①拆分询问
②动态删边转化成静态加边
③如果暴力中点的总数不多,暴力的复杂度不会很大。
正解
显然,不在MST上的边是无用的。
50分做法:关键字③,每次合并2个连通块,直接将连通块大小相乘,再乘以边权,就是这条边对答案的贡献了。
70分的做法:类比L=0,颜色不是很多,所以合并两个连通块时,暴力枚举配对的颜色即可。
颜色如何枚举?
考虑kruskal重构树,按照边权从小到大连边时,方点代表边,圆点代表原图中的点。
弄个bfs。一个连通块必然对应着kruskal重构树的dfs序中连续的一段。
100分的做法:颜色不能暴力枚举,那么考虑将哪些点作为询问点。显然选择小的连通块的点。
所以询问点的数量不会超过O(n log n)
拆分询问,然后询问dfs序上一段区间的点的个数。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define N 400010
#define M1 500010
#define M 6000010
#define LL long long
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
using namespace std;
struct Graph{
int next[N],to[N],head[N],tot;
int fa[N];
void lb(int x,int y){
to[++tot]=y;next[tot]=head[x];head[x]=tot;
}
void clear(){
tot=0;
memset(next,0,sizeof(next));
memset(head,0,sizeof(head));
}
}G;
int read(){
int fh=0,rs=0