sicily 1171. The Game of Efil

1171. The Game of Efil

Constraints

Time Limit: 2 secs, Memory Limit: 64 MB

Description

Almost anyone who has ever taken a class in computer science is familiar with the "Game of Life," John Conway's cellular automata with extremely simple rules of birth, survival, and death that can give rise to astonishing complexity.
The game is played on a rectangular field of cells, each of which has eight neighbors (adjacent cells). A cell is either occupied or not. The rules for deriving a generation from the previous one are:

  • If an occupied cell has 0, 1, 4, 5, 6, 7, or 8 occupied neighbors, the organism dies (0, 1: of loneliness; 4 thru 8: of overcrowding).
  • If an occupied cell has two or three occupied neighbors, the organism survives to the next gener-ation.
  • If an unoccupied cell has three occupied neighbors, it becomes occupied (a birth occurs).


One of the major problems researchers have looked at over the years is the existence of so-called "Garden of Eden" configurations in the Game of Life -- configurations that could not have arisen as the result of the application of the rules to some previous configuration. We're going to extend this question, which we'll call the "Game of Efil": Given a starting configuration, how many possible parent configurations could it have? To make matters easier, we assume a finite grid in which edge and corner cells "wrap around" (i.e., a toroidal surface). For instance, the 2 by 3 configuration:

has exactly three possible parent configurations; they are:

You should note that when counting neighbors of a cell, another cell may be counted as a neighbor more than once, if it touches the given cell on more than one side due to the wrap around. This is the case for the configurations above.

Input

There will be multiple test cases. Each case will start with a line containing a pair of positive integers m and n, indicating the number of rows and columns of the configuration, respectively. The next line will contain a nonnegative integer k indicating the number of "live" cells in the configuration. The following k lines each contain the row and column number of one live cell, where row and column numbering both start at zero. The final test case is followed by a line where m = n = 0 -- this line should not be processed. You may assume that the product of m and n is no more than 16.

Output

For each test case you should print one line of output containing the case number and the number of possible ancestors. Imitate the sample output below. Note that if there are 0 ancestors, you should print out
Garden of Eden.

Sample Input

2 3
2
0 0
0 1
3 3
4
0 0
0 1
0 2
1 1
3 3
5
0 0
1 0
1 2
2 1
2 2
0 0

Sample Output

Case 1: 3 possible ancestors.
Case 2: 1 possible ancestors.
Case 3: Garden of Eden.

题目分析

生命游戏,按照规则确定给定状态有几种父状态

遍历所有的初始状态,查看其子状态,

暴力深搜


#include <cstdio>
#include <iostream>
#include <memory.h>

int father[20][20];
int mid[20][20];
int son[20][20];
int row, col;
int count;
int dir[8][2] = {-1,-1, -1,0, -1,1, 0,-1, 0,1, 1,-1, 1,0, 1,1};
void getChild() {
  for (int i = 1; i <= row; ++i) {
    for (int j = 1; j <= col; ++j) {
      int num = 0;
      for (int k = 0; k < 8; ++k)
        num += father[i+dir[k][0]][j+dir[k][1]];
      if (father[i][j]) {
        if (num == 2 || num == 3)
          mid[i][j] = 1;
        else
          mid[i][j] = 0;
      } else {
        if (num == 3)
          mid[i][j] = 1;
        else
          mid[i][j] = 0;
      }
    }
  }
}

bool check() {
  getChild();
  for (int i = 1; i <= row; ++i)
    for (int j = 1; j <= col; ++j)
      if (mid[i][j] != son[i][j])
        return false;
  return true;
}

void print() {
  for (int i = 0; i <= row+1; ++i) {
    for (int j = 0; j <= col+1; ++j) {
      printf("%d", father[i][j]);
    }
    printf("\n");
  }
}

void travel(int r, int c) {
  for (int digit = 0; digit < 2; ++digit) {
    father[r][c] = digit;

    for (int i = 1; i <= row; ++i) {
      father[i][0] = father[i][col];
      father[i][col + 1] = father[i][1];
    }
    for (int i = 0; i <= col + 1; ++i) {
      father[0][i] = father[row][i];
      father[row + 1][i] = father[1][i];
    }
    
    if (r == row && c == col) {
      if (check()) {
        count++;
        //print();
      }
    } else {
      int newr = c==col ? r+1 : r;
      int newc = c==col ? 1 : c+1;
      travel(newr, newc);
    }
  }
}

int main()
{
  int id = 1;
  while (scanf("%d%d", &row, &col)) {
    if (row==0 && col==0)
      break;
    memset(father, 0, sizeof(father));
    memset(mid, 0, sizeof(mid));
    memset(son, 0, sizeof(son));
    int lifes;
    scanf("%d", &lifes);
    int pr, pc;
    for (int i = 0; i < lifes; ++i) {
      scanf("%d%d", &pr, &pc);
      son[pr+1][pc+1] = 1;
    }
    count = 0;
    travel(1,1);

    if (count == 0)
      printf("Case %d: Garden of Eden.\n", id++);
    else
      printf("Case %d: %d possible ancestors.\n", id++, count);
  }
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值