最简单粗暴的方法(也是Time Out的方法- -|||)
遍历s的每一个子数组,然后分别确定是不是回文,确实了是回文之后再确定是不是比当前记录要大
太蠢了,但是不失为一种方法。。。只不是Time Out 233333
public class Solution {
public String longestPalindrome(String s) {
String str = null;
int maxSize = 0;
String maxSub = s.substring(0,1);
for(int i = 0; i < s.length(); i++){
//j从i+1开始,因为j如果从i开始那就一个数,没有什么参考价值
for(int j = i + 1; j < s.length(); j++){
str = s.substring(i,j+1);
if(isPalindrome(str) && str.length() > maxSize){
maxSub = str;
maxSize = str.length();
}
}
}
return maxSub;
}
public boolean isPalindrome(String s){
for(int i = 0; i < s.length(); i++){
if(s.charAt(i) != s.charAt(s.length() - i - 1)){
return false;
}
}
return true;
}
}
另一种方法,在做的过程中发现,回文是个重叠子问题,(回文的内层是回文,回文内层的回文又是个回文,子子孙孙无穷尽也。。。)想到了DP——动态规划,至于怎么做呢,明天再弄。。
好,回来了,最基本的回文就是单个的单词(a),其它回文都是单个单词的扩展,
可以采用动态规划的带备忘录的自顶向下的方法(或者自底向上都可以),创建一个二维布尔数组,因为单个单词都为回文,所以isPalindrome[i][i] = true;
其它的回文分为两种形式,bab和baab,
前一种bab的形式,如果中间的部分已经是回文,那么只需要检测它前一个和后一个,如果相等,那么就可以填写布尔数组,
后一种baab的形式,外层的bb是和上面一样的,但是内层的aa需要在检测单词的时候不仅检测前后是否相等;还要检测到前一个是否和该单词相等,后一个是否和该单词相等
public class Solution {
public String longestPalindrome(String s) {
int m = s.length();
boolean[][] isPalindrome = new boolean[m][m];
int maxSize = 0;
String maxStr = null;
//之前循环的方向错了
//而且回文有两种,baab和bab
for(int i = 0; i < m; i++){
for(int a = 0; a + i < m; a++){
int b = a + i;
if(i == 0) isPalindrome[a][b] = true;
if(isPalindrome[a][b]){
if(b - a + 1 > maxSize){
maxSize = b - a + 1;
maxStr = s.substring(a,b + 1);
}
//如果是i==0的情况,还需要检测aa,bb这样的回文
if(i == 0){
if(a - 1 >= 0 && s.charAt(a - 1) == s.charAt(a)){
isPalindrome[a - 1][a] = true;
if(2 > maxSize){
maxSize = 2;
maxStr = s.substring(a - 1,a + 1);
}
}
if(b + 1 < m && s.charAt(b + 1) == s.charAt(b)){
isPalindrome[b][b + 1] = true;
if(2 > maxSize){
maxSize = 2;
maxStr = s.substring(b,b + 2);
}
}
}
if(a - 1 >= 0 && b + 1 < m && s.charAt(a - 1) == s.charAt(b + 1)){
isPalindrome[a - 1][b + 1] = true;
if((b + 1) - (a - 1) + 1 > maxSize){
maxSize = (b + 1) - (a - 1) + 1;
maxStr = s.substring(a - 1,b + 2);
}
}
}
}
}
return maxStr;
}
}
注:之前写了一半,发现循环的方式错了,如果按照第一种的那样暴力解法的循环方向的话会漏掉很多情况,
注意理解动态规划的思想,规模由小到大(例:baabcba,从规模为1的b,a,a,b,c,b,a到规模为2的ba,aa,ab,bc,cb,ba到规模为3的baa,aab,abc,bcb,cba...)
动态规划是以规模为循环变量进行的,确定了重叠子问题、找到了如何划分规模的方法也就找到了动态规划的做法。