ElasticSearch第十一讲 ES检索评分score以及分数计算逻辑

本文深入探讨了ElasticSearch的评分机制,主要基于TF/IDF算法。TF(Term Frequency)衡量词条在文档中出现的次数,IDF(Inverse Document Frequency)评估词条的普遍性。还详细介绍了 IDF 的计算公式以及TF的计算公式,涉及到boost、k1、b等参数的影响。通过示例展示了如何计算文档的score,并指出字段长度对评分的影响。
摘要由CSDN通过智能技术生成

ES底层分数计算逻辑

relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度。Elasticsearch使用的是 term frequency/inverse document frequency算法,简称为TF/IDF算法

Term frequency:搜索文本中的各个词条在field文本中出现了多少次,出现次数越多,就越相关

PUT /score/_doc/1
{
   
  "doc":"hello you, and world is very good"
  
}
PUT /score/_doc/2
{
   
  "doc"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员路同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值