测试数学公式

二次方程求根公式

When $( a \ne 0 )$, there are two solutions to $(ax^2 + bx + c = 0)$ and they are:
$$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $$
    
$$
\begin{aligned}
\dot{x} & = \sigma(y-x) \\
\dot{y} & = \rho x - y - xz \\
\dot{z} & = -\beta z + xy
\end{aligned}
$$
--------------------- 
作者:aabond 
来源:CSDN 
原文:https://blog.csdn.net/qq_23091073/article/details/79888859 
版权声明:本文为博主原创文章,转载请附上博文链接!

【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)内容概要:本文档聚焦于五种优化算法(A、HO、CP、GOOSE、NRBO)与BP神经网络结合的回归预测性能比较研究,所有内容均基于Matlab代码实现。研究属于创新未发表成果,涵盖机器学习、深度学习、智能优化算法等多个科研方向的应用实例,尤其在时序预测、回归分析等领域。文档还列举了大量相关课题,如微电网多目标优化调度、储能选址定容、轴承故障诊断等,展示了广泛的科研应用场景和技术实现手段。; 适合人群:具备一定Matlab编程基础,从事科研或工程应用的研究人员,尤其是关注智能优化算法与神经网络结合应用的硕士、博士研究生及科研工作者。; 使用场景及目标:①用于科研项目中对比不同优化算法对BP神经网络回归预测性能的影响;②为相关领域如能源调度、故障诊断、负荷预测等提供算法实现参考与代码支持;③辅助学术论文撰写与实验验证。; 阅读建议:此资源以实际Matlab代码为核心,建议读者结合文档中提供的网盘链接获取完整代码资源,并在实践中运行和调试代码,深入理解各算法的实现细节与优化机制。同时建议按目录顺序系统学习,以便构建完整的知识体系。
### WFG测试函数的数学公式与详细定义 WFG(Walking Fish Group)测试函数是一类用于多目标优化问题的基准测试函数。这些函数被设计用来评估优化算法在解决复杂多目标优化问题时的表现。WFG测试函数的特点在于其能够模拟多种困难特性,例如非凸性、非连续性和高维决策空间。 #### WFG测试函数的基本结构 WFG测试函数通常由以下几个部分组成[^1]: - **位置参数**:定义目标函数的维度和变量范围。 - **形状函数**:控制目标函数的空间分布。 - **路径函数**:引入非线性变换以增加问题的复杂性。 - **权重向量**:决定每个目标的重要性。 WFG测试函数的一般形式可以表示为: ```math \mathbf{y} = \mathbf{T}_k(\mathbf{x}), ``` 其中 $\mathbf{x}$ 是决策变量向量,$\mathbf{T}_k$ 是一系列变换操作,包括位置变换、形状变换和路径变换。 #### WFG1的具体公式 WFG1 是 WFG 测试函数中最基础的一个版本。其数学公式可以写成如下形式[^2]: ```math f_1(\mathbf{x}) = \sum_{i=1}^{n-1} x_i + h(x_n), ``` 其中 $h(x_n)$ 是一个辅助函数,定义为: ```math h(x_n) = \sin(3\pi x_n)^2. ``` #### WFG2的具体公式 WFG2 引入了更多的非线性特性。其公式为: ```math f_1(\mathbf{x}) = g(\mathbf{x}) \cdot (1 + h(x_n)), ``` 其中 $g(\mathbf{x})$ 是一个聚合函数,定义为: ```math g(\mathbf{x}) = 1 + 9 \cdot \left(\frac{\sum_{i=1}^{n-1} x_i}{n-1}\right), ``` 而 $h(x_n)$ 的定义与 WFG1 中相同。 #### WFG3的具体公式 WFG3 进一步增加了复杂性,其公式为: ```math f_1(\mathbf{x}) = g(\mathbf{x}) \cdot \prod_{i=1}^{m-1} (1 - x_i^a) \cdot (1 + h(x_m)), ``` 其中 $a$ 是一个常数,通常取值为 0.5 或 2。 #### 示例代码实现 以下是一个简单的 Python 实现,用于计算 WFG1 的目标值: ```python import numpy as np def wfg1(x): n = len(x) f1 = sum(x[:n-1]) + np.sin(3 * np.pi * x[n-1])**2 return f1 # 示例输入 x = np.array([0.5, 0.5, 0.5]) result = wfg1(x) print(f"WFG1 result: {result}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值