自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(93)
  • 收藏
  • 关注

原创 城市路边障碍物检测系统源码分享

数据集信息展示在本研究中,我们使用的数据集名为“yolo”,旨在训练和改进YOLOv8模型,以实现高效的城市路边障碍物检测。该数据集专注于城市环境中的多种障碍物,涵盖了26个不同的类别,确保了模型在实际应用中的广泛适应性和准确性。通过精心标注和丰富的样本,数据集为YOLOv8的训练提供了坚实的基础,帮助其在复杂的城市场景中识别和分类各种障碍物。

2024-09-28 12:11:50 2633

原创 军事武器检测系统源码分享

数据集信息展示在现代军事领域,武器检测技术的迅速发展为战场监控和安全保障提供了强有力的支持。为了提升武器检测系统的准确性和效率,本研究采用了名为“Weapons_v2”的数据集,旨在改进YOLOv8模型在军事武器检测中的应用效果。该数据集专门设计用于训练和评估深度学习模型,尤其是针对复杂环境下的武器识别任务。“Weapons_v2”数据集包含了丰富的军事武器图像,经过精心标注,确保了数据的高质量和高可靠性。该数据集的类别数量为2,分别标记为“0”和“1”,这两个类别代表了不同类型的军事武器。

2024-09-27 23:24:35 1159

原创 果蝇检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“Ceratitis-capitata-dataset”的数据集,以改进YOLOv8模型在果蝇检测任务中的表现。该数据集专注于地中海果蝇(Ceratitis capitata),这一物种在农业生态系统中具有重要的经济影响。通过精确检测和识别这一害虫,农民和农业科学家能够更有效地采取措施,减少其对作物的危害,从而提高农业生产的可持续性和经济效益。

2024-09-27 21:04:30 1189

原创 螺栓插入螺栓未脱落检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“Bolt-Inserts”的数据集,以支持对改进YOLOv8模型的训练,旨在实现螺栓插入及螺栓未脱落的检测系统。该数据集专门设计用于识别和分类与螺栓插入相关的图像数据,具有独特的应用价值和广泛的工业前景。数据集的类别数量为1,主要聚焦于“Bolt-inserts”这一类别,充分体现了其专一性和针对性。“Bolt-Inserts”数据集的构建过程经过精心设计,确保所收集的图像涵盖了各种螺栓插入的场景和条件。

2024-09-27 18:44:16 1390

原创 花卉识别系统源码分享

数据集信息展示在本研究中,我们使用了名为“20221119”的数据集,以改进YOLOv8的花卉识别系统。该数据集的设计旨在提供一个高效且精准的基础,以支持深度学习模型在花卉识别任务中的训练和评估。数据集的类别数量为2,分别标记为‘0’和‘1’,这两个类别可能代表不同类型的花卉或花卉的不同状态,具体的类别定义将在后续的研究中进一步明确。“20221119”数据集的构建过程经过精心设计,确保了数据的多样性和代表性。

2024-09-27 16:20:04 1061

原创 用户界面元素检测系统源码分享

数据集信息展示在现代软件开发中,用户界面(UI)元素的自动检测与识别是提升用户体验和界面设计效率的重要环节。为此,我们构建了一个名为“UI Det”的数据集,旨在为改进YOLOv8的用户界面元素检测系统提供高质量的训练数据。

2024-09-26 17:14:41 768

原创 火车车厢检测系统源码分享

数据集信息展示在现代计算机视觉领域,数据集的质量和多样性直接影响到模型的训练效果和最终性能。为此,本研究采用了名为“train-railway”的数据集,旨在改进YOLOv8的火车车厢检测系统。该数据集专门针对火车车厢的检测任务进行了精心设计,包含了丰富的图像数据,能够有效支持模型的训练和验证。“train-railway”数据集的类别数量为1,具体类别为“train”。这一设计体现了数据集的专一性和针对性,确保了模型在特定任务上的高效学习。

2024-09-26 14:54:33 1026

原创 番茄病害检测系统源码分享

数据集信息展示在现代农业中,植物病害的及时检测与处理是确保作物健康和提高产量的关键因素之一。为了实现这一目标,深度学习技术的应用逐渐成为研究的热点。在此背景下,我们构建了一个专门用于训练改进YOLOv8的番茄病害检测系统的数据集,命名为“Tomate-Alternariosis”。该数据集的设计旨在为番茄作物的病害检测提供高质量的图像数据,尤其是针对Alternariosis(番茄叶斑病)的识别与分类。

2024-09-26 10:58:12 913

原创 包装材料回收分类系统源码分享

数据集信息展示在当今环境保护意识日益增强的背景下,包装材料的回收利用成为了一个重要的研究领域。为了有效推动这一领域的发展,我们构建了一个专门用于训练改进YOLOv8的包装材料回收分类系统的数据集,命名为“tetra pak”。该数据集的主要目标是通过深度学习技术,提升对特定包装材料的识别和分类能力,从而为回收工作提供更为精准的支持。“tetra pak”数据集的设计旨在聚焦于一种特定的包装材料,即Tetra Pak。

2024-09-25 21:50:37 1326

原创 餐具与食品检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“TableView”的数据集,以支持改进YOLOv8的餐具与食品检测系统的训练和测试。该数据集包含36个类别,涵盖了与餐饮环境密切相关的各种物品,旨在提高模型在实际应用中的准确性和鲁棒性。通过对这些类别的深入分析,我们能够更好地理解数据集的结构和潜在应用。“TableView”数据集的类别包括从常见的餐具到饮品容器,再到餐饮场景中的人和物品。

2024-09-25 19:30:16 929

原创 足球比赛场景检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“soccer”的数据集,以改进YOLOv8在足球比赛场景中的检测性能。该数据集专门针对足球比赛的特定场景进行设计,旨在提高模型对不同角色和物体的识别能力。数据集包含四个主要类别,分别是“Arbitre”(裁判)、“Ballon”(足球)、“Gardien”(守门员)和“Joueur”(球员)。这些类别的选择反映了足球比赛中最为关键的元素,使得模型能够在复杂的比赛环境中准确识别和定位。“soccer”数据集的构建考虑到了足球比赛的多样性和动态性。

2024-09-25 12:49:35 1141

原创 蚕病检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“Sericulture”的数据集,以支持改进YOLOv8的蚕病检测系统的训练和验证。该数据集专注于蚕的健康状况评估,具体包含两大类别:健康(healthy)和生病(sick)。通过对这两类样本的深入分析和处理,我们旨在提升模型在实际应用中的准确性和可靠性。“Sericulture”数据集的构建过程经过了严格的筛选和标注,确保每一张图像都能够真实反映蚕的健康状态。健康类别的样本包含了生长良好、外观正常的蚕,图像中蚕体色泽鲜亮,形态完整,表现出活跃的生长状态。

2024-09-24 18:29:05 1133

原创 机械部件缺陷检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“sample2”的数据集,以支持改进YOLOv8的机械部件缺陷检测系统的训练和评估。该数据集专注于机械部件的缺陷识别,包含五个主要类别,分别是“Exhaust Valve”(排气阀)、“Retainers”(保持器)、“Split Collets”(分体夹头)、“Spring”(弹簧)和“Spring Seat Washer”(弹簧座垫圈)。这些类别涵盖了机械部件中常见的关键组件,旨在为缺陷检测提供全面的样本和多样化的场景。

2024-09-24 16:08:49 1000

原创 简历信息提取系统源码分享

数据集信息展示在本研究中,我们使用了名为“resume parsing”的数据集,旨在改进YOLOv8模型在简历信息提取系统中的应用效果。该数据集专注于简历图像的处理与分析,旨在通过深度学习技术实现对简历内容的自动识别与提取。数据集的设计充分考虑了简历的多样性和复杂性,确保能够涵盖不同格式、布局和风格的简历,从而为模型的训练提供丰富的样本。该数据集的类别数量为1,类别列表中仅包含“image”这一项。这一设计反映了数据集的专一性,主要聚焦于图像数据的处理。

2024-09-24 13:48:24 940

原创 铁路工人检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“railroad”的数据集,以训练和改进YOLOv8模型,旨在实现高效的铁路工人检测系统。该数据集专注于单一类别的对象识别,具体类别为“worker”,即铁路工人。通过精心收集和标注的图像数据,“railroad”数据集为我们提供了一个丰富的训练基础,使得模型能够在复杂的铁路环境中准确识别和定位工人。“railroad”数据集的构建过程考虑到了铁路工人工作环境的多样性和复杂性。数据集中包含了在不同时间、不同天气条件和不同作业场景下拍摄的铁路工人图像。

2024-09-24 11:28:03 992

原创 豆类苗叶检测系统源码分享

数据集信息展示在本研究中,我们使用的数据集名为“ProyectoF_0”,该数据集专门用于训练和改进YOLOv8模型,以实现高效的豆类苗叶检测系统。随着农业技术的不断进步,智能化的植物检测系统在作物管理和病虫害监测中扮演着越来越重要的角色。豆类作为一种重要的农作物,其苗叶的健康状况直接影响到作物的生长和产量。因此,构建一个准确且高效的检测系统对于提高农业生产效率具有重要意义。“ProyectoF_0”数据集包含两类目标,分别为“Daniel”和“Frijol_0”。

2024-09-24 09:07:46 569

原创 道路坑洼检测系统源码分享

数据集信息展示在道路维护和交通安全领域,及时检测和修复道路坑洼是至关重要的。为此,我们构建了一个专门用于训练改进YOLOv8的道路坑洼检测系统的数据集,命名为“potholesdetection”。该数据集的设计旨在提供丰富的样本,以提高模型在实际应用中的准确性和鲁棒性。数据集包含了多种不同类型的道路坑洼样本,涵盖了不同的环境、光照条件和路面材质,以确保模型能够在各种情况下有效识别和分类坑洼。“potholesdetection”数据集的类别数量为三,分别用数字“0”、“1”和“2”进行标识。

2024-09-23 21:54:04 1072 1

原创 水果枝叶藤蔓识别与分类系统源码分享

数据集信息展示在本研究中,我们使用了名为“Plants-bana”的数据集,以支持对水果枝叶藤蔓的识别与分类系统的改进,特别是针对YOLOv8模型的训练与优化。该数据集专注于两种重要的植物类别:香蕉(Banana)和可可(Cacao),这两种植物在农业、食品工业以及生态系统中都占据着重要的地位。通过对这两种植物的深入研究,我们希望能够提高模型在实际应用中的准确性和鲁棒性。“Plants-bana”数据集的设计考虑到了植物识别与分类的多样性和复杂性。

2024-09-23 19:33:27 1405

原创 手机检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“phone”的数据集,以训练和改进YOLOv8的手机检测系统。该数据集专门针对手机检测任务而设计,包含了丰富的图像数据,旨在提高模型在实际应用中的准确性和鲁棒性。数据集的结构清晰,分为训练集、验证集和测试集,分别存放在指定的路径下。训练集位于“…/train/images”,验证集位于“…/valid/images”,而测试集则在“…/test/images”中。这种划分方式有助于模型在不同阶段的学习和评估,确保其在未见数据上的表现。

2024-09-23 17:12:54 1395

原创 管道缺陷检测系统源码分享

数据集信息展示在管道缺陷检测领域,数据集的质量和多样性直接影响到模型的训练效果和实际应用的准确性。本研究所采用的数据集名为“p15-pipe”,该数据集专门为改进YOLOv8的管道缺陷检测系统而设计,旨在提升模型在不同管道形状下的检测能力和准确率。数据集包含三种主要类别,分别为“circle-pipe”(圆形管道)、“side-pipe”(侧面管道)和“square-pipe”(方形管道),这些类别的选择充分考虑了实际应用中管道的多样性和复杂性。

2024-09-23 14:52:18 2128

原创 油污检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“oil_spill”的数据集,旨在训练和改进YOLOv8模型,以实现高效的油污检测系统。该数据集专注于单一类别的油污检测,具有独特的应用价值,尤其是在环境监测和海洋保护领域。油污的及时检测与处理对于防止生态系统的进一步恶化至关重要,因此构建一个高效的检测系统显得尤为重要。“oil_spill”数据集的类别数量为1,具体类别为“oil_spill”。这一单一类别的设计使得数据集在特定任务上的表现更加集中,能够有效地帮助模型学习油污的特征与表现形式。

2024-09-22 21:26:49 1579

原创 医疗设备检测系统源码分享

这段代码的核心部分主要集中在目标检测头的实现上,包括如何通过卷积层和动态头或AFPN来处理输入特征,并生成最终的检测结果。每个类的设计都考虑了不同的网络结构和功能,以适应不同的检测需求。这个文件是YOLOv8模型中检测头(Detect Head)的实现,主要用于目标检测任务。文件中定义了多个类,每个类实现了不同的检测头,使用了不同的网络结构和模块。以下是对代码的逐部分分析。

2024-09-22 14:24:58 1166

原创 题目标题序号选项定位系统源码分享

数据集信息展示在现代计算机视觉领域,数据集的构建与选择对模型的训练效果至关重要。本研究所使用的数据集名为“nptorneklerlemore”,其设计旨在为改进YOLOv8的题目标题序号选项定位系统提供丰富的训练样本。该数据集包含8个类别,具体类别包括:‘answer_a’,‘answer_b’,‘answer_c’,‘answer_d’,‘answer_e’,‘question_number_box’,‘whole_question_box’,以及‘z_ignore’。

2024-09-22 00:27:21 1471

原创 光纤缺陷检测系统源码分享

数据集信息展示在光纤缺陷检测领域,数据集的构建与选择至关重要。为实现对光纤缺陷的高效识别与分类,本研究采用了名为“New Fiber Model”的数据集。该数据集专门为改进YOLOv8模型在光纤缺陷检测任务中的表现而设计,旨在提升模型的准确性和鲁棒性。“New Fiber Model”数据集的独特之处在于其专注于光纤缺陷这一特定类别,数据集的类别数量为1,且该类别被标记为“0”。这一设计简化了模型的训练过程,使得研究者能够专注于光纤缺陷的特征提取与学习。

2024-09-21 13:14:55 1235

原创 蚊子检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“Mosquito”的数据集,以支持对YOLOv8模型的改进,旨在提升蚊子检测系统的性能。该数据集专门针对蚊子这一特定目标进行构建,具有独特的应用价值和研究意义。蚊子作为传播多种疾病的媒介,其监测与控制在公共卫生领域中占据着重要地位。因此,开发高效的蚊子检测系统不仅有助于科学研究,还能为疾病预防和控制提供技术支持。“Mosquito”数据集的设计理念是为深度学习模型提供高质量的训练样本,以便模型能够准确识别和定位蚊子。

2024-09-21 09:46:07 1869

原创 建筑工地作业类型工种岗位检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“merge_project”的数据集,以支持改进YOLOv8的建筑工地作业类型工种岗位检测系统的训练和评估。该数据集专门设计用于捕捉和标注建筑工地上各种作业活动的图像数据,旨在提高计算机视觉模型在实际应用中的准确性和可靠性。

2024-09-20 10:16:46 983

原创 数学表达式检测系统源码分享

数据集信息展示在本研究中,我们采用了名为“mathmatic_expression”的数据集,以支持对YOLOv8模型在数学表达式检测方面的改进。该数据集专门设计用于训练和评估模型在识别和分类数学表达式时的性能,尤其是在嵌入式和孤立式数学表达式的检测上。数据集包含两个主要类别,分别为“embedded”和“isolated”,这两个类别的划分旨在反映数学表达式在不同上下文中的表现形式。“embedded”类别包含那些在文本或其他图形元素中嵌入的数学表达式。

2024-09-19 23:13:26 1088

原创 姿态识别与跌倒检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“lying”的数据集,旨在改进YOLOv8模型在姿态识别与跌倒检测系统中的表现。该数据集专门设计用于捕捉和分析与人类姿态相关的多种状态,尤其是在老年人群体中,跌倒事件的检测至关重要。数据集的类别数量为10,涵盖了多种与姿态相关的行为,具体类别包括:‘1’、‘Fallen Person’、‘Falling’、‘Kneeling’、‘Sitting’、‘Sleeping’、‘Standing’、‘Unknown’、‘fall’和‘not fall’。

2024-09-19 20:35:28 1104

原创 车牌识别系统源码分享

数据集信息展示在本研究中,我们采用了名为“License plate detection”的数据集,以改进YOLOv8的车牌识别系统。该数据集专门针对车牌检测任务进行了精心设计,旨在提供高质量的训练样本,以提高模型在实际应用中的准确性和鲁棒性。数据集的类别数量为2,分别为“0”和“object”,其中“0”代表车牌的具体位置,而“object”则用于标识车牌这一目标对象。这种分类方式使得模型能够更好地理解和区分车牌与其他背景信息,从而实现更为精准的检测。

2024-09-19 11:00:56 1514

原创 灯具检测系统源码分享

数据集信息展示在现代计算机视觉领域,灯具检测作为一个重要的应用场景,受到了广泛的关注。为了提升灯具检测系统的性能,特别是在使用YOLOv8模型进行训练时,构建一个高质量的数据集显得尤为重要。本次研究中,我们采用了名为“Lamps”的数据集,该数据集专门用于灯具的检测任务,旨在为YOLOv8模型提供充足且多样化的训练样本,从而改进其在灯具识别和定位方面的准确性和鲁棒性。“Lamps”数据集的设计理念是聚焦于灯具这一特定类别,数据集中包含了丰富的灯具图像,这些图像涵盖了不同类型、形状、颜色和使用场景的灯具。

2024-09-19 00:23:15 1101

原创 全身安全带检测系统源码分享

数据集信息展示在现代安全管理和工地作业中,全身安全带的使用至关重要。为了提高安全带的检测效率和准确性,我们构建了一个专门的数据集,名为“jyfyfi”,旨在为改进YOLOv8的全身安全带检测系统提供高质量的训练数据。该数据集专注于单一类别的对象识别,确保模型能够在各种环境下准确识别和定位全身安全带。“jyfyfi”数据集的类别数量为1,具体类别为“full-body-harness - v1 2024-06-05 5-56pm”。

2024-09-18 22:01:28 1513

原创 电子元件缺陷检测系统源码分享

数据集信息展示在现代电子制造业中,确保产品质量至关重要。为此,开发一个高效的电子元件缺陷检测系统显得尤为重要。本研究所采用的数据集名为“inspection PCB”,该数据集专门用于训练和改进YOLOv8模型,以实现对电子元件的精准检测和缺陷识别。数据集的设计旨在涵盖多种常见的电子元件类型,确保模型在实际应用中的广泛适用性和高效性。

2024-09-18 18:45:14 1429

原创 文本检测系统源码分享

数据集信息展示在现代计算机视觉领域,文本检测技术的进步对于各种应用场景至关重要,尤其是在文档分析、自动驾驶、智能监控等领域。为了推动这一技术的发展,本研究选用了“icdar2015 text”数据集作为训练改进YOLOv8文本检测系统的基础。该数据集是由国际文档分析与识别会议(ICDAR)组织的,旨在为文本检测算法提供标准化的评估基准。其独特之处在于,数据集专注于文本的检测与识别,涵盖了多种复杂的场景和文本布局,极大地丰富了算法的训练和测试环境。

2024-09-18 16:10:47 1494

原创 安全装备检测系统源码分享

数据集信息展示在现代安全装备检测系统的研究中,数据集的构建与应用至关重要。本研究所采用的数据集名为“Helmet_Vest”,旨在为改进YOLOv8模型提供高质量的训练数据,以提升其在安全装备检测中的准确性和鲁棒性。该数据集专注于五种关键类别的安全装备和相关人员,具体包括:Boots(靴子)、Gloves(手套)、Helmet(头盔)、Human(人类)和Vest(背心)。这些类别不仅涵盖了个人防护装备的基本组成部分,还考虑到了在各种工作环境中可能出现的人员形态,从而为模型的训练提供了丰富的样本。

2024-09-17 22:04:54 1896

原创 手势识别系统源码分享

数据集信息展示在手势识别领域,数据集的构建与选择是实现高效模型训练的关键环节。本研究所采用的数据集名为“Hand Gestures”,其设计旨在为改进YOLOv8手势识别系统提供强有力的支持。该数据集包含九个类别,涵盖了多种常见的手势,这些手势在日常交流和人机交互中扮演着重要角色。具体类别包括:‘back’(后退)、‘closed’(闭合)、‘down’(向下)、‘forward’(向前)、‘left’(向左)、‘open’(打开)、‘right’(向右)、‘stop’(停止)和‘up’(向上)。

2024-09-17 19:19:44 1672

原创 手绘电子元件符号检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“GRAComponents”的数据集,以改进YOLOv8模型在手绘电子元件符号检测系统中的表现。该数据集专门为电子元件符号的识别与分类而设计,包含了17个不同类别的电子元件符号。这些类别涵盖了电子电路中常见的元件,能够为模型提供丰富的训练样本,进而提升其检测精度和泛化能力。

2024-09-17 16:34:34 1649

原创 旅游景点检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“Gabes”的数据集,以改进YOLOv8模型在旅游景点检测系统中的表现。该数据集专注于突尼斯的旅游景点,涵盖了丰富的文化和自然景观,具有重要的研究价值和应用潜力。

2024-09-17 14:22:53 1383

原创 花卉检测系统源码分享

数据集信息展示在本研究中,我们使用了名为“Flower”的数据集,旨在训练和改进YOLOv8模型,以实现高效的花卉检测系统。该数据集的设计初衷是为了解决花卉识别中的多样性和复杂性问题,提供一个标准化的训练基础,以提升模型在实际应用中的表现。数据集的类别数量为1,具体类别列表仅包含一个标签“0”,这意味着该数据集专注于一种特定类型的花卉,旨在深入挖掘这一类别的特征和变化。“Flower”数据集的构建过程考虑到了花卉的多样性和生长环境的复杂性。虽然类别数量仅为1,但该类别下的样本数量和多样性却是丰富的。

2024-09-17 12:11:11 1473

原创 鱼类疾病检测系统源码分享

数据集信息展示在鱼类疾病检测系统的研究中,数据集的质量和多样性至关重要。本项目所使用的数据集名为“fish-project”,其设计旨在支持改进YOLOv8模型在鱼类疾病检测方面的应用。该数据集包含22个类别,涵盖了多种鱼类及其相关疾病,能够为模型的训练提供丰富的样本和多样化的特征信息。

2024-09-17 09:59:40 2516

原创 餐具分类检测系统源码分享

数据集信息展示在现代计算机视觉领域,数据集的构建与应用是推动深度学习模型发展的重要基础。本研究所采用的数据集名为“final tableware sorting”,旨在为改进YOLOv8的餐具分类检测系统提供丰富的训练样本和标注信息。该数据集专注于餐具的自动识别与分类,具有重要的实际应用价值,尤其是在智能厨房、餐饮服务及自动化清洗等领域。“final tableware sorting”数据集包含四个主要类别,分别是叉子(fork)、刀子(knife)、盘子(plate)和勺子(spoon)。

2024-09-16 17:12:39 1919

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除