NLP自然语言处理-机器学习和自然语言处理介绍-事件抽取
一.案例介绍
1.背景
事件抽取技术的核心价值,是可以把半结构化、非结构化数据转换为对事件的结构化描述,进而支持丰富的下游应用。
比如说我们要为一些人物整理年表,如图,把人物经历的重要事件汇总起来,就可以用事件抽取方法来完成;我们不仅可以整理历史数据,还可以把新闻数据中的事件(天气、体育比赛情况、不和谐的行为和言论、面馆开张信息等等)抽取出来等等。
2.什么是事件
“事件”指在特定的时空下,由一个或多个角色(事件主体)参与的,围绕某个主题开展的一系列活动。
2.1事件组成元素
组成事件的各元素包括: 触发词、事件类型、论元及论元角色。
事件触发词/trigger:表示事件发生的核心词,多为动词或名词;
事件类型/event type:ACE2005 定义了8种事件类型和33种子类型。其中,大多数事件抽取均采用33 种事件类型。 事件识别是基于词的34 类( 33类事件类型+None) 多元分类任务,角色分类是基于词对的36 类( 35 类角色类型+None) 多元分类任务;
事件论元/事件要素/argument:事件的参与者,主要由实体、值、时间组成。值是一种非实体的事件参与者,例如工作岗位 ;
论元角色/要素角色/role:事件论元在事
NLP自然语言处理-机器学习和自然语言处理介绍(四)
最新推荐文章于 2024-10-05 17:05:05 发布
本文介绍了事件抽取技术在自然语言处理中的重要性,包括如何将非结构化数据转化为结构化描述,用于人物年表整理和新闻事件提取。事件由触发词、事件类型、论元和论元角色组成,涉及8大类别。文章还概述了事件抽取的模型构成,如BERT为基础的触发词、论元和属性分类器,并提供了样例数据和结果展示。
摘要由CSDN通过智能技术生成