常用的浮点数存储格式:32-bit IEEE-754 floating-point format

IAR支持这种数据格式

 对于大小为32-bit的浮点数(32-bit为单精度,64-bit浮点数为双精度,80-bit为扩展精度浮点数),
1、其第31 bit为符号位,为0则表示正数,反之为负数,其读数值用s表示;
2、第30~23 bit为幂数,其读数值用e表示;
3、第22~0 bit共23 bit作为系数,视为二进制纯小数,假定该小数的十进制值为x;

十进制转浮点数的计算方法:则按照规定,十进制的值用浮点数表示为:
如果十进制为正,则s = 0,否则s = 1;将十进制数表示成二进制,然后将小数点向左移动,直到这个数变为1.x的形式即尾数,移动的个数即位指数。为了保证指数为正,将移动的个数都加上127,由于尾数的整数位始终为1,故舍去不做记忆。

对3.141592654来说,
1、正数,s = 0;
2、3.141592654的二进制形式为正数部分计算方法是除以二取整,即得11,小数部分的计算方法是乘以二取其整数,得0.0010 0100 0011 1111 0110 1010 1000,那么它的二进制数表示为11.0010 0100 0011 1111 0110 1010 1;
3、将小数点向左移一位,那么它就变为1.1001 0010 0001 1111 1011 0101 01,所以指数为1+127=128,e = 128 = 1000 0000;
4、舍掉尾数的整数部分1,尾数写成0.1001 0010 0001 1111 1011 0101 01,x = 921FB6
5、最后它的浮点是表示为0 1000 0000 1001 0010 0001 1111 1011 0101 = 40490FDA
浮点数转十进制的计算方法:

则按照规定,浮点数的值用十进制表示为:
= (-1)^s  * (1 + x) * 2^(e - 127)

对于49E48E68来说,
1、其第31 bit为0,即s = 0
2、第30~23 bit依次为100 1001 1,读成十进制就是147,即e = 147。
3、第22~0 bit依次为110 0100 1000 1110 0110 1000,也就是二进制的纯小数0.110 0100 1000 1110 0110 1000,其十进制形式为(0.110 0100 1000 1110 0110 1000 * 2^23) / (2^23) = (0x49E48E68 & 0x007FFFFF) / (2^23) = (0x648E68) / (2^23) = 0.78559589385986328125,即x = 0.78559589385986328125。

第3步是关键,22~0bit为二进制小数,需要转换成十进制;可以先乘以2^23,再除以2^23

这样,该浮点数的十进制表示
= (-1)^s  * (1 + x) * 2^(e - 127)
= (-1)^0  * (1+ 0.78559589385986328125) * 2^(147-127)
=    1872333

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值