12个球一个天平,现知道只有一个和其它的重量不同,问怎样称才能用三次就找到那个球。
13个呢?(注意此题并未说明那个球的重量是轻是重,所以需要仔细考虑)(5分钟-1小时)
分析:
由于并未说明那个球的重量是轻是重,所以6、6分组,三次是做不到的。
4、4、4分组,①②③④ ⑤⑥⑦⑧ ⑨⑩⑪⑫分别为A、B、C
第一次称:
①②③④ > ⑤⑥⑦⑧
①②③④ < ⑤⑥⑦⑧
说明不正常球在这8个球里面,⑨⑩⑪⑫正常,但不知比正常的轻还是重
第二次称:天平一边放3个:
①②⑤ > ③⑥⑨ 说明不正常球在①②⑥中,因为他们位置没有变化
第三次称:
①⑥ > ⑨⑩ 那么①为不正常球
①⑥ < ⑨⑩ 那么⑥为不正常球,而且⑥较轻
①⑥ = ⑨⑩ 那么②为不正常球
①②⑤ < ③⑥⑨ 说明不正常球在③⑤中,因为他们交换过位置
同理
①②⑤ = ③⑥⑨ 说明不正常球在④⑦⑧中
同理
①②③④ = ⑤⑥⑦⑧
说明不正常球在⑨⑩⑪⑫中
第二次称:
①②③ = ⑨⑩⑪ 则⑫不正常
①②③ > ⑨⑩⑪ 则不正常球在⑨⑩⑪中,且不正常球较轻
第三次称:
⑨ = ⑩ 则⑪不正常
⑨ > ⑩ 则⑩不正常
⑨ < ⑩ 则⑨不正常
①②③ < ⑨⑩⑪ 则不正常球在⑨⑩⑪中,且不正常球较重