- 博客(1911)
- 收藏
- 关注
原创 2026年AI时代程序员新机遇:Java工程师掌握大模型,薪资翻三倍,突破职业瓶颈!
在人工智能(AI)技术全面渗透各行各业的当下,技术领域的职业边界正不断被打破。对于长期深耕传统编程领域的Java程序员而言,从企业级应用开发转向大模型研发,不仅是顺应技术浪潮的必然选择,更是突破职业瓶颈、实现薪资与能力双重跃升的关键机遇。这一转型之路虽需跨越技术壁垒,却能为程序员打开通往AI时代核心领域的大门。
2026-02-21 15:08:14
169
原创 从传统编程转向大模型编程
提供简要的意图 (Intent) 和上下文 (Context)。Prompt: “我想给结算流程增加 VIP 折扣,参考现有的 Coupon 逻辑。: 让 AI 草拟详细的技术文档 (Spec)。Result: AI 生成了,包含修改步骤、接口定义和数据流。核心环节!你必须阅读并修改这份文档,确保 AI 理解了你的真实意图。**只有当你“锁定” (Sign-off) 这份文档后,才能进入下一阶段。**这里的文档就是你对 AI 下达的“法律指令”。
2026-02-20 18:04:20
450
原创 程序员转行AI 应用赛道太香了!!(附攻略+资源)
技术深度不够,涨薪难;行业迭代快,从事多年传统项目开发,想凭着技术赚钱,没想到,大模型时代,又开始卷AI技术了!甚至,不迭代自己的技术,可能大量的技术人员!这也让程序员们开始重新评估自己的本领:“AI会取代哪些技术行业?“谁的饭碗不保了?“都在做大模型,程序员的未来在哪里?\01.AI快速发展,国内也有超过 130 个大模型问世!当产品接入AI,潜力无穷!不管是企业、还是程序员,都靠着AI应用产品赚翻了!前段时间,美图在官网发布公告称:得益于”生成式AI技术“,上半年收益高速增长!
2026-02-19 21:37:02
499
原创 AI Agent 路由模块的4种设计模式
路由模块是自适应智能体系统设计中的关键控制机制,路由模块可以在智能体流程里的开始或中间的多个节点实现。可以用作分类用途,也可以用来选取调用合适的工具。在实际项目情况,一般建议先用大模型模式采用提示词路由快速验证分发能力,跑通流程。如果对精确度有更高要求,可以使用嵌入路由和小模型路由进行专门优化。实际项目里可能需要搭配着几种路由一起使用。比如需要对bad case做快速干预修复时可能就会用到规则路由或者嵌入嵌入路由。如果团队有算法人员,推荐采用小模型模式,基于自身业务领域的样本进行SFT微调。
2026-02-18 22:28:26
549
原创 Claude Skills深度解析:从概念到实战,打造你的专属AI助手
头部元数据(YAML 格式):包含name(名称)和(描述)字段。这些是 Claude 判断何时使用技能的唯一依据,因此清晰、全面地描述技能的功能和使用场景非常重要。主体内容(Markdown 格式):关于如何使用该技能的说明和指引。只有在技能被触发后才会加载(如果被触发的话)。从本质上看,Skills 仍然属于上下文工程的一部分,其核心目标在于缓解上下文长度受限和Token消耗过快的问题。同时,它也继承了优秀系统提示词所具备的设计原则——清晰、简洁、结构化,只不过是以文件系统目录结构的形式。
2026-02-16 08:30:00
594
原创 别搞混了!MCP和Agent Skill到底有什么区别
MCPSkill「哲学」连接主义知识打包「问的问题」“AI 能访问什么?“AI 知道怎么做什么?「层级」集成层知识层「Token 策略」预加载所有能力按需加载知识记住这句话:❝❞MCP 让 AI 能"碰到"数据,Skill 教 AI 怎么"处理"数据。它们不是替代关系,而是互补关系。一个成熟的 AI Agent 系统,两者都需要。
2026-02-15 08:30:00
1366
原创 LangGraph1.0速通指南(一)从状态、节点到边的智能体工作流构建指南
在之前的系列中,笔者已经系统梳理了LangChain 1.0 的核心知识点,并通过一个多模态 RAG 项目带领大家实践了 LangChain 1.0 的关键技术。从本篇开始,笔者将为大家进一步分享的相关知识。与 LangChain 1.0 相比,LangGraph 1.0 的整体架构变动不大,但其定位发生了重要转变:在 1.0 版本之后,LangGraph 不再是 LangChain 的能力延伸,而是成为 LangChain 的能力底座。
2026-02-14 08:30:00
248
原创 AI编程助手为何总是半途而废?Ralph Loop模式彻底解决!
在开发者语境中,“agent loop” 通常指智能体内部的感知—决策—执行—反馈循环(即典型的感知-推理-行动机制)。而 Ralph Loop 更侧重于迭代执行同一任务直至成功,与典型智能体循环在目的和设计上有所不同:常规 Agent Loop 通常更通用:用于决策型 agent,可以根据多种状态和输入动态调整下一步操作。ReAct 模式适合需要动态适应的场景,Plan-and-Execute 模式适合结构化任务分解。
2026-02-13 08:30:00
583
原创 从零开始:打造支持多工具调用的MCP Chat Agent,附完整代码教程
随着大模型能力的提升,单纯的对话已经无法满足实际工程需求。越来越多的场景需要模型具备调用外部工具、访问系统能力、执行复杂任务的能力。提供了一种统一、标准化的方式,让模型可以通过协议调用外部工具;LangGraph则用于构建可控、可追踪的 Agent 推理流程;Chainlit提供了一个轻量但功能完整的 Web Chat UI,非常适合 Agent 场景。支持 MCP 多工具调用支持 Ollama / OpenAI 两种模型后端支持流式输出支持 Web UI(Chainlit)
2026-02-12 08:30:00
1165
原创 大模型从屁都不懂到精通我是怎么做到的!
先说我的经历,传统后端开发入职阿里,工作一年后转大模型应用层。两年Agent、RAG经验,拿到字节超30%涨幅Agent开发岗位offer。**第一阶段:**了解LLM能干啥,当API使用,Agent探索,这阶段提示词怎么写很值得学习,吴恩达的课程讲的很好推荐去学。**第二阶段:**了解LLM模型大致原理,Transformer模型基本原理,注意力机制,SFT,模型微调,Pytorch这种框架使用,Hugeface开源模型能自己部署。
2026-02-10 16:41:45
524
原创 新项目完结,Ai Agent 智能体、拖拉拽编排!
这篇文章介绍了小傅哥耗时7个月开发的基于Spring AI框架的AI Agent智能体项目,包含38节课程(视频+文档),涵盖前后端+DevOps技术栈。项目从RAG到MCP,实现了企业级可编排的AI Agent智能体,提供可视化链路编排、多种执行设计模式、RAG和MCP开发能力等技术点。适合希望提升AI应用能力、增强核心竞争力的开发者,项目已部署上线并提供完整源码。❝沉淀、分享、成长,让自己和他人都能有所收获!😜❞大家好,我是技术UP主小傅哥。这是一套综合。
2026-02-06 11:20:53
844
原创 扣子(Coze)实战:篇篇10W+的小林漫画,用Coze实现并发布到公众号
文章主要介绍了使用Coze平台一键生成类似"小林漫画"风格内容的完整工作流程。该流程包括:使用DeepSeek-V3生成漫画文案,通过豆包-1.5-Pro视觉推理模型生成绘图提示词,利用文生图模型生成漫画,使用画板工具合成图文,并最终自动上传至微信公众号草稿箱。整个工作流实现了从主题输入到公众号发布的全流程自动化,大幅降低了创作小林风格漫画的门槛,提高了内容生产效率。最近有朋友给发了一个漫画公众号,问能不能使用coze制作出类似的漫画效果?
2026-02-06 11:09:37
634
原创 AI Coding 长文分享:如何真正把工具用起来,从原理到实战应用
文章系统介绍了AI编程工具(如Cursor、Claude Code)的底层机制,包括Token计算、工具调用、代码库索引与Merkle Tree等技术,并提供了提升对话质量的方法和实际应用场景。文章还分享了结合AI的编码最佳实践,包括规则设置、渐进式开发、文档规范和安全合规,旨在帮助不同经验水平的开发者真正掌握AI编程工具,提升开发效率。本文从原理到实践系统地分享了如何高效使用AI编程工具。
2026-02-06 11:07:07
630
原创 重磅首发!Google 64页AI Agent技术指南(附中英双版PDF),翻遍全网,这绝对是最全教材
如今,随着大语言模型技术的飞速发展,AI Agent已经从实验室走向了企业的生产环境。特别是谷歌在2025年9月15日最新发布的这份《Startup Technical Guide: AI Agents》白皮书,为整个行业提供了一份极具价值的技术路线图。这份指南的核心论点是:构建真正有价值的AI Agent,早已超越了模型选型和提示词工程的范畴,它是一门新兴的、跨领域的工程学科。
2026-02-03 22:36:36
792
原创 有手就行,教你从0到1快速手搓搭建个GUI Agent
什么是GUI Agent?简单来说,就是一个能够"看懂"屏幕(mobile/pc/web)并进行自动操作的AI Agent。比如用户发送指令“整理文件”,PC GUI Agent就可以基于纯GUI界面理解页面内容,进行逐步决策&操作,直到完成用户任务。随着GUI Agent的应用前景逐渐明朗,GUI Agent在25年的发展很迅猛,其中一个比较明显的新趋势是,通用大模型也在训练GUI上的能力:因此,搭建一个好用的GUI Agent变得越来越简单。
2026-02-03 22:35:02
875
原创 SpringAI搭建智能体(二):搭建客服系统智能体
文章展示了完整的智能体架构设计,包括工具接口、工具管理器、语义分析模块和智能体核心,并通过智能客服、数据处理和自动化运维等场景阐述了实际应用。是一个重要的概念,它的核心能力是自主性与灵活性。现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。传统 AI 通常专注于单一功能(如文本生成、分类任务等),而智能体是一个更高层次的概念,它整合了多个功能模块,能够在复杂场景中完成多步骤任务。
2025-12-18 13:49:02
835
原创 我花了2天,找到了我觉得翻译质量最好的AI大模型。
为此,作者自制了能接入该API的论文翻译插件,解决了arXiv等平台的实时翻译需求。现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。但遇见一些专业术语搭配复杂表达方式的文段,我说实话,我现在一般用沉浸式翻译搭配OpenAI或者DeepL的API,翻译起来还是懵逼。不过,如果你跟现在的我一样,就喜欢浏览器上苦读英文文献,也追求翻译质量,那我觉得,真的可以考虑凑合用一下我这个小破插件。
2025-12-18 12:01:57
1197
原创 金融机构如何落地智能体?16个头部企业Agent最佳实践
在此背景下,沙丘智库发布《2025年金融业智能体最佳实践报告》,深入分析智能体为金融行业带来的变革与挑战,金融业(包括银行、保险、证券等金融机构)智能体的建设进展与应用场景等,帮助金融机构了解这一新兴市场;文章分析了智能体在金融领域的应用场景及面临的挑战,并提供了多个金融机构的智能体应用案例,为金融业智能体发展提供参考。· 动态协作下,智能体可以根据环境或任务的需求灵活调整其行为和合作方式,提供了更好的灵活性,但也引入了更多的不确定性,使系统行动更难预测和控制,导致可靠性较低。方向不对,努力白费。
2025-12-12 20:18:18
1438
原创 解构多智能体系统,一篇就够了。
我认为无论是 agent 还是 multi agent system,构建原型都远比构建一个可以长期运行,不需要太多人工介入的 pipeline 简单的多。所以,在构建好原型后,如何走完从原型到产品的这最后一公里呢?科学的评估与可靠的工程化。第一步是评估,如何 agent 进行有效的评估?agent 和传统的数据结构算法或者业务代码不同。传统的软件执行通常有明确的大致(多线程/多进程可能没那么固定)可预期的步骤,比如:给定输入 X,系统应遵循路径 Y 产生输出 Z。
2025-12-12 20:17:21
725
原创 多模态RAG技术总结及知识图谱构建分割+抽取+验证三阶段思路
RAG作为一种范式,可以灵活扩展,可以来个暴力组合,写综述。变成从文本RAG到多模态输入-文本输出,再到多模态输入-多模态输出的一个演进。这块,看一个技术总结,如《》,https://doi.org/10.36227/techrxiv.176341513.38473003/v2,https://github.com/INTREBID/Awesome-MM-RAG,所有可能使用的模态组合作为输入和输出,包括文本、图像、音频、视频、代码、表格、知识图谱、3D 对象等。一共54个。看几个点。
2025-12-12 20:16:34
1020
原创 程序员转行到大模型开发领域,以下是几个推荐的方向、推荐原因
每个方向都有其独特的挑战和发展机遇,程序员可以根据自己的背景和兴趣选择最适合自己的路径。无论选择哪个方向,持续学习最新的技术和保持对行业的敏感度都是非常重要的。此外,积极参与社区活动、贡献开源项目也是提升技能和个人影响力的有效方式。在大模型时代,我们如何有效的去学习大模型?现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。掌握大模型技术你还能拥有更多可能性。
2025-12-11 19:09:36
1319
原创 万字长文!从零开始构建你的第一个_ReAct_Agent
其实对于AI Agent的介绍已经非常非常多了,简单来说,AI Agent 是一种具备“感知-思考-行动”能力的智能体,它能接收任务,自动推理并调用外部工具完成复杂流程。而在众多 Agent 架构中,ReAct 框架(Reasoning + Acting)是一种非常经典的思维方式——它让大语言模型一边推理(用 Thought 表达思考过程),一边行动(用 Action 执行操作),并根据返回结果(Observation)继续决策,直到给出最终的答案。
2025-12-11 19:08:05
878
原创 企业级知识库问答系统实战:从架构到部署的完整指南,大模型入门
文章详解了大模型智能问答系统的构建全流程,涵盖架构设计、检索增强生成、性能优化、部署维护等关键技术,提供完整代码实现和解决方案,并分享AI学习路线与面试资源,助力开发者全面掌握大模型应用开发。
2025-12-11 19:06:46
640
原创 Python机器人Agent编程——实现一个本地大模型和爬虫手机号归属地天气查询系统完整实现(附源码)
在本文中,我们将逐步实现一个手机号归属地天气查询agent。这个agent将能够接收用户的手机号输入,自动查询该手机号的归属地,并进一步根据获取的城市信息查询该地区的实时天气信息。我们将使用Python语言,并结合qwen_agent库,及fastapi服务来实现这个功能。最后,我们创建一个Assistant实例,这个agent将使用我们定义的工具来处理用户的输入,并返回归属地和天气信息。# 配置LLM。
2025-12-11 19:05:30
959
原创 程序员失业后不要再去送外卖、开滴滴了,做AI大模型他不香吗?
面对失业,程序员们往往会感到迷茫和不安,尤其是那些在这个行业工作多年却仍感到未能取得满意成就的人。转行似乎是一条艰难的道路,但事实上,除了常见的选择如外卖、跑腿和网约车之外,程序员们还有更多的岗位可以选择。对于那些担心自己在原有行业无法胜任的人,转行并不意味着更大的困难。相反,这可能是一个重新审视自己职业路径和技能的机会。例如,随着人工智能技术的迅速发展,AI大模型等领域为程序员提供了新的职业方向。AI大模型等新兴技术领域的发展为程序员提供了多种职位选择。
2025-12-08 14:43:21
1327
原创 35岁程序员失业了,除了送外卖,还能做什么?
35岁程序员失业,确实是一个非常大的挑战。但危机中或许也会藏着新的机遇。重要的是,捕蝇自暴自弃,认证找准自己的方向,然后坚定的走下去。任何行业的路都不好走,只要你能保持学习的热情,不断的提升自己,年龄就不是问题。35岁,不是终点,而是新的起点。在当今的AI时代,程序员的工作模式已经受到了很大的冲击。随着AI大模型的快速发展和应用,传统初级程序员的工作确实是大受影响,这些人员的工作主要是功能实现和重复场景实现。而现在,越来越多的工具可以帮助程序员提高效率,如Github Copilot等。
2025-12-08 14:40:39
1177
原创 大模型综述:从小白到专家的完整指南,值得收藏!
随着模型和语料的扩大,大型语言模型展示了从少量上下文示例中学习的能力,这被称为上下文增强学习(ICL)。利用ICL,大型语言模型可以执行各种复杂任务,例如解决数学推理问题。ICL的基本理念是从类比中汲取经验。ICL与监督学习有一个显著的区别,就是它不需要进行参数更新,而是直接在预训练的语言模型上进行预测。ICL作为一种新的范式,具有很多天然的优势:由于演示是用自然语言编写的,因此提供了一个可解释的接口来与LLM通信。这种方法通过改变演示和模板,使得人类知识更容易融入LLM的上下文学习中。
2025-12-04 22:24:56
768
原创 问答类AI智能体评测方案
维度用来描述从哪些方面对智能体进行效果评估。通常可以分层对维度进行细化,第一层维度通常是场景,用来描述智能体可以完成哪些业务场景,第二层维度通常是任务,描述一个业务场景下需要完成的具体任务。通过对智能体进行场景和任务的拆解,可以确保更加全面地对智能体进行多方面、多维度的效果评估。维度定义对于数据集构建、指标设定具有重要参考意义。业务场景(第一层维度)任务定义(第二层维度)销售相关问题:意图识别、黑化改写、文档检索、答案生成代码相关问题:联网搜索、知识检索模型调用、答案生成文档内容洞察。
2025-12-01 18:15:55
862
原创 大龄程序员想转行大模型,应该往哪个方向转?
每个方向都有其独特的挑战和发展机遇,程序员可以根据自己的背景和兴趣选择最适合自己的路径。无论选择哪个方向,持续学习最新的技术和保持对行业的敏感度都是非常重要的。此外,积极参与社区活动、贡献开源项目也是提升技能和个人影响力的有效方式。
2025-11-26 14:58:15
281
原创 AIO Sandbox:为 AI Agent 打造的一体化沙箱环境,收藏这篇就够了
一句话介绍:AIO Sandbox 在一个沙盒内集成浏览器、代码执行、终端、可视化接管、正反向代理、MCP、鉴权等基础功能,可根据需求进行沙盒环境定制,让不同的 Agent“在一个环境容器内中更高效地完成任务”。
2025-11-22 21:53:58
1303
原创 MoE模型深度指南:架构、路由、负载均衡与视觉扩展,一篇全讲明白!
专家容量(Expert Capacity)是指单个专家在一个批次中最多能处理的 token 数量,设为。当某专家处理的 token 数量达到时,后续分配给该专家的 token 会被路由到次优专家。混合专家模型(MoE)通过 “专家分工 + 智能路由” 的核心思想,为大模型的性能提升与效率优化提供了革命性解决方案。
2025-11-22 21:50:49
985
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅