- 博客(1863)
- 收藏
- 关注
原创 大模型应用评估全指南(多轮对话系统、RAG、AI Agent)
这两种分数都基于 n-gram 的重叠程度进行计算。尽管比较的侧重点不同(例如,BLEU 更侧重精确率,ROUGE 更侧重召回率),但其核心思想都是:共享的词语片段越多,得分就越高。这种方式相对简单,因为如果输出文本使用了不同的措辞,得分就会较低。所有传统指标最适用于存在标准答案的应答场景,但对于如今我们构建的 LLM 应用而言,它们往往并非最合适的选择。
2025-11-11 18:53:39
746
原创 大模型面试必考点:PPO/DPO/GRPO/DAPO算法演进全解析!
最近看大模型方向的秋招面经,发现一个很有意思的现象:面试官们对 PPO、DPO、GRPO、DAPO 简直是“爱不释手”,几乎成了大模型岗的必考题。我去知乎或者翻博客想搞懂这几个“O”的演进关系时,往往一头扎进复杂的数学公式里,看得头皮发麻。为什么我们先有了 PPO,又去卷 DPO,现在怎么又冒出来个 GRPO 和 DAPO?它们到底在解决什么问题?今天我们就来扒一扒大模型偏好对齐(Alignment)算法的演进内幕。不讲复杂的公式推导,我们只聊核心逻辑:它们到底在解决什么痛点,又引入了什么新坑?提到 RLH
2025-11-11 18:52:47
443
原创 【AI+医疗】知识图谱与大语言模型融合:破解生物医学AI的黑盒难题!
本文探讨了大语言模型在生物医学研究中的局限性,提出了通过知识图谱增强LLM可解释性的解决方案,并详细介绍了统一KG-LLM框架在生物自然语言处理中的应用前景和实践价值。
2025-11-11 18:51:48
311
原创 程序员转行AI 应用赛道太香了!!(附攻略+资源)
除了 AI 入门课程,我还给大家准备了非常全面的**「AI 大模型面试题」,**包括字节、腾讯等一线大厂的 AI 岗面经分享、LLMs、Transformer、RAG 面试真题等,帮你在面试大模型工作中更快一步。教程从当下的市场现状和趋势出发,分析各个岗位人才需求,带你充分了解自身情况,get 到适合自己的 AI 大模型入门学习路线。,规划属于你自己的大模型学习路线,并且专门提前收集了大家对大模型常见的疑问,集中解答所有疑惑!技术深度不够,涨薪难;行业迭代快,从事多年传统项目开发,想凭着技术赚钱,没想到,
2025-11-10 19:41:15
480
原创 为什么这波 AI 浪潮没有带来大量的就业岗位
好的SaaS能把数据端的活儿做到80-90分。AI服务的价值在哪儿?在很多企业眼里就是最后的10-20分。如果你对接完企业数据到不了95-100分的表现,那企业不但没付费意愿还嫌浪费时间。可是大模型不是一个标准化的组件,实际上你会发现同一个厂商同一系列下不同大模型返回的结果是没法做到完全一致的,小到输出文本的格式,大到生成结果的风格……就算你self-host了哪家的开源模型来试图维持一个稳定质量的大模型接口,不出两年这个大模型必被淘汰。不信你看看两年前多少人用Mistral和Llama,现在呢?
2025-11-10 19:40:19
424
原创 35岁程序员转型攻略:从代码到大模型,其实你比想象中更有价值!
最近收到很多程序员朋友的私信:“35岁了,真的不想再写代码了,但除了编程什么都不会,还能干什么?这种焦虑我完全理解。但说句实话,你远比自己想象的更有价值。35岁转型确实需要勇气,但绝不是走投无路。总之,各行各业都不好做,都是辛苦钱。但正因为如此,有技术背景、有解决问题能力的你,在任何领域都有机会脱颖而出。停止内耗,立刻行动。你的经验和技能比你想象的更值钱,转型的路也比你想象的更宽广。可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习。
2025-11-08 22:13:58
1018
原创 一文搞懂Transformer里的QKV,大模型底层逻辑不再神秘!
Query(查询)、Key(键)和 Value(值)是 Transformer 架构中自注意力机制(Self-Attention Mechanism)的核心概念 ,它们本质上是由输入数据经过特定的线性变换得到的向量。Query 的作用就像是你向模型提出的一个问题,它代表了当前需要关注或处理的元素想要获取信息的 “意愿”,用来查询其他元素与自身的相关性。
2025-11-06 14:04:07
670
原创 Transformer——理解QKV
在这一篇中,我们重新认识了词向量,qkv以及他们的意义和作用。在此基础上,后续才能更好的理解decoder的工作原理。接下来,主要会讲解decoder结构和原理,transformer的总体结构,训练和预测流程。如果能找到合适的项目的话,会进行代码层面的学习演示。可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习_,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。
2025-11-06 14:01:14
858
原创 智能体(Agent)是怎么知道什么时候要调用 Tool 的?
Tool 不是“立刻”被调用的,而是“模型先思考一下”要不要用它模型每次只做一小步:思考 → 执行动作 → 观察 → 再思考提示词驱动的微循环执行器,不是魔法,是 prompt 技巧 + tool 调度可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习_,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了帮助大家打破壁垒,快速了解大模型核心技术原理,学习相关大模型技术。从原理出发真正入局大模型。
2025-11-04 15:13:02
609
原创 用LangChain实现一个Agent:从零实现到工具包全解析
虽然我们这里只介绍了基于 ReAct 构建的 Agent,但实际上,LangChain 里提供了大量的各种创建 Agent 的方法,比如创建基于 SQL 的 Agent、基于 JSON 的 Agent 等等,我们可以根据需要进行选择。create_react_agent 完成的工作就是基于这段提示词的执行过程进行处理,比如,解析返回内容中的动作(Action)与动作输入(Action Input),还有前面说的 agent_scratchpad 的处理过程,也是在这个函数中组装进去的。
2025-11-04 15:10:58
548
原创 大模型学习路线(2025最新)从零基础入门到精通,看完这一篇就够了
通过以上七个阶段的学习,您将能够建立起对大规模预训练模型的深刻理解,并掌握其在实际应用中的技巧。记得在学习过程中保持好奇心和探索精神,积极尝试新技术并参与社区讨论。希望这份学习路线图能帮助您成功踏上大规模模型的学习之旅!可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习_,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了帮助大家打破壁垒,快速了解大模型核心技术原理,学习相关大模型技术。从原理出发真正入局大模型。
2025-11-04 15:06:34
983
原创 【RAG系列】多模态RAG的三种实现思路和代码
RAG工程的出现是为了弥补LLM专业知识的不足以及减少LLM幻觉问题,目前最常见的是文本RAG,但随着场景越来越复杂,对多模态RAG的需求开始变多。本文先简要介绍多模态基础,然后详细介绍多模态RAG的三种实现思路,以及代码实现。一、文本RAG的介绍我们知道文本RAG工程的关键是索引构建和文档检索,这两者都需要借助embedding模型将文本编码成向量以构建索引,然后在检索时计算用户查询向量(文本)和文档向量(文本)在同一个向量空间计算距离,距离最近的文档被认为最相关。
2025-11-04 15:05:23
776
原创 基于LangChain+LLM的本地知识库问答:从企业单文档
过去半年,随着ChatGPT的火爆,直接带火了整个LLM这个方向,然LLM毕竟更多是基于过去的经验数据预训练而来,没法获取最新的知识,以及各企业私有的知识为了获取最新的知识,ChatGPT plus版集成了bing搜索的功能,有的模型则会调用一个定位于 “链接各种AI模型、工具”的langchain的bing功能为了处理企业私有的知识,要么基于开源模型微调,要么更可以基于langchain里集成的向量数据库和LLM****搭建本地知识库问答此处的向量数据库的独特性在哪呢?
2025-10-31 12:37:01
966
原创 【AI Agent】从零写一个agent框架,打造最强开放agent
之前我们讲过了想将LLM能力在具体的应用中实践,最好的方法是做成一个agent。本系列我们就从零写一个agent框架,方便我们构造和运行agent。
2025-10-31 12:34:36
914
原创 一文搞懂MCP、Function Calling和A2A
发现:客户端从 /.well-known/agent.json 获取 Agent Card,了解智能体的能力。启动处理:服务器处理任务,可能涉及流式更新或直接返回结果。交互(可选):若任务状态为 input-required,客户端可发送更多消息,使用相同 Task ID 提供输入。完成:任务达到终端状态(如 completed、failed 或 canceled)。单纯的大模型,只能对话和生成文本,是“思想的巨人,行动的矮子”。配上Agent的大模型,能感知环境、使用工具、执行任务,成为“万能助手”。
2025-10-29 16:56:00
271
原创 AI Agent竞争的下半场:决胜关键不在模型,而在系统架构
智能体系统不是一蹴而就的产品,而是一种“逐步演进的工程”。一开始你可以只做一个问答助手,但随着工具接入、状态管理、知识库丰富,它会慢慢成长为一个懂业务、会协作、能执行的智能体生态。未来的竞争,不在于谁接了哪个大模型,而在于谁能把“智能”更好地嵌入业务流程中。而这张架构图,正是那条通往可落地智能体系统的路线图。可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习_,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。
2025-10-29 16:51:18
1349
原创 LangChain联合Manus季逸超最新分享!也许当前最好
上下文精简是上下文工程的核心技术之一,但它并非一个单一的操作。Manus 在实践中将其细分为两种截然不同但相辅相成的方法:Compaction (压缩)和 Summarization (总结),并建立了一套严谨的工作流程来协同使用它们当仅靠压缩已无法将上下文大小控制在阈值以下时,就需要动用更传统的总结方法。总结是不可逆的,意味着信息会有损失,因此必须非常谨慎地使用执行时机:总结是最后的手段,只有在多轮压缩后,上下文长度仍然接近性能“腐烂”的临界点时才会触发。
2025-10-29 16:45:23
687
原创 Transformer实战——从零开始构建Transformer
相较于传统模型,如循环神经网络 (Recurrent Neural Network, RNN)和卷积神经网络 (CNN),的优势在于能够有效地理解输入和输出序列中元素之间的关系,尤其是在长距离依赖的情况下,例如文本中相距较远的两个单词之间的关系。与RNN不同,能够并行训练,显著减少训练时间,并且能够处理大规模数据集。这种创新性的架构在大语言模型 (LLM) 如ChatGPTBERT和DeepSeek的发展中起到了关键作用,标志着人工智能领域发展的一个重要里程碑。在模型之前,自然语言处理 (NLP。
2025-10-27 18:12:15
1524
原创 本地运行+数据安全:MCP协议多智能体金融分析攻略_金融mcp服务
这个项目的核心思路是构建一个多智能体协作系统,能够接收自然语言的金融查询请求,自动生成分析代码,并输出可视化图表。整个系统通过MCP协议与Cursor集成,让你可以直接在IDE中享受专业的金融分析服务。为每个智能体定义具体的任务:。
2025-10-27 18:10:45
849
原创 大模型方向刚进组,大佬们有没有大模型的学习路线
第一步先搞明白 Transformer的核心逻辑 —— 比如 Self-Attention到底是咋“盯着”句子里不同词的,Layer Norm和以前可能听过的BN有啥不一样(不用死记,搞清楚为啥大模型更爱用Layer Norm就行),还有位置编码是咋让模型知道“词的顺序”的(像绝对编码、RoPE这些常见的实现方式,大概知道原理)。为了帮助大家打破壁垒,快速了解大模型核心技术原理,学习相关大模型技术。,规划属于你自己的大模型学习路线,并且专门提前收集了大家对大模型常见的疑问,集中解答所有疑惑!
2025-10-25 19:52:52
835
原创 为什么现在程序员都在冲大模型方向?
除了 AI 入门课程,我还给大家准备了非常全面的**「AI 大模型面试题」,**包括字节、腾讯等一线大厂的 AI 岗面经分享、LLMs、Transformer、RAG 面试真题等,帮你在面试大模型工作中更快一步。教程从当下的市场现状和趋势出发,分析各个岗位人才需求,带你充分了解自身情况,get 到适合自己的 AI 大模型入门学习路线。,规划属于你自己的大模型学习路线,并且专门提前收集了大家对大模型常见的疑问,集中解答所有疑惑!_,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。
2025-10-23 19:01:12
463
原创 程序员转行AI大模型教程(非常详细),大模型入门到精通,存下吧很难找全的!
在人工智能(AI)迅速发展的背景下,从传统的编程领域如Java程序员转向大模型开发是一个既充满挑战也充满机遇的过程。对于 Java 程序员来说,这也是一个实现职业转型、提升薪资待遇的绝佳机遇。一、明确大模型概念简单来说,大模型就是具有大量参数和强大计算能力的人工智能模型,可以处理各种复杂的任务,如自然语言处理、图像识别等。想象一下,大模型就像是一个超级聪明的大脑,能够理解和处理各种信息。二、转行步骤第一步:学习基础知识。了解机器学习、深度学习的基本概念和原理,掌握常见的算法和模型架构。
2025-10-21 18:44:40
1040
原创 面试宝典 Transformer面试题全搞定
Transformer为何使用多头注意力机制?(为什么不使用一个头)Transformer为什么Q和K使用不同的权重矩阵生成,为何不能使用同一个值进行自身的点乘?(注意和第一个问题的区别)Transformer计算attention的时候为何选择点乘而不是加法?两者计算复杂度和效果上有什么区别?为什么在进行softmax之前需要对attention进行scaled(为什么除以dk的平方根),并使用公式推导进行讲解在计算attention score的时候如何对padding做mask操作?
2025-10-16 18:39:34
820
原创 【翻译】Attention Is All You Need
注意力是你所需要的一切主导的序列转导模型是基于复杂的递归或卷积神经网络,包括一个编码器和一个解码器。性能最好的模型还通过注意机制将编码器和解码器连接起来。我们提出了一个新的简单的网络结构–Transformer,它只基于注意力机制,完全不需要递归和卷积。在两个机器翻译任务上的实验表明,这些模型在质量上更胜一筹,同时也更容易并行化,需要的训练时间也大大减少。我们的模型在WMT 2014英德翻译任务中达到了28.4 BLEU,比现有的最佳结果(包括合集)提高了2 BLEU以上。
2025-10-16 18:37:56
738
原创 OpenAI重磅发布“KG+LLM”结合的企业智能知识管理
时序代理是一个管道组件,用于摄取原始数据并为知识图谱生成带时间戳的三元组。这可以实现精确的基于时间的查询、时间线构建、趋势分析等。3、管道如何工作?管道首先对原始文档进行语义分块。这些块被分解为为我们的 Temporal Agent 准备的语句,然后创建时间感知三元组。然后,失效代理可以执行时间有效性检查,发现并处理任何被图表上发生的新语句失效的语句。知识图谱上的多步骤检索。
2025-10-14 21:23:05
791
原创 告别传统RAG,用智能Agent方法构建 AI 知识库
问题:定期嵌入新数据、监控向量库性能都增加复杂度;向量可能泄露原文信息,需要防范embedding反推原文的风险。概括来说,传统RAG扩展了LLM知识却引入新的挑战——
2025-10-14 21:21:01
1300
原创 AI Agent案例实践:三种智能体开发模式详解之二(基于LangChain框架)
LangChain 是一个开源框架,主要用来 让大语言模型(LLM)能够更好地和外部世界交互,从而不只是“对话生成器”,而是变成可以调用工具、处理数据、接入知识库、执行任务的“智能体”。
2025-10-14 21:19:51
1177
原创 从零到一开发 Text-to-SQL MCP 数据查询服务器
我们开发的 Text-to-SQL MCP 服务器是一个基于 Model Context Protocol (MCP) 的安全数据库查询服务。该服务器允许通过自然语言生成 SQL 查询,并在严格的权限控制下执行查询操作,确保数据安全的同时提供便捷的数据访问能力。本文详细介绍了从零开始构建 Text-to-SQL MCP 服务器的完整过程,包括环境搭建、核心模块开发、安全机制实现和服务测试。通过 FastMCP 框架,我们快速构建了一个安全、可控的数据库查询服务,实现了自然语言到 SQL 的转换功能。
2025-10-13 18:36:06
564
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅