- 博客(1896)
- 收藏
- 关注
原创 SpringAI搭建智能体(二):搭建客服系统智能体
文章展示了完整的智能体架构设计,包括工具接口、工具管理器、语义分析模块和智能体核心,并通过智能客服、数据处理和自动化运维等场景阐述了实际应用。是一个重要的概念,它的核心能力是自主性与灵活性。现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。传统 AI 通常专注于单一功能(如文本生成、分类任务等),而智能体是一个更高层次的概念,它整合了多个功能模块,能够在复杂场景中完成多步骤任务。
2025-12-18 13:49:02
740
原创 我花了2天,找到了我觉得翻译质量最好的AI大模型。
为此,作者自制了能接入该API的论文翻译插件,解决了arXiv等平台的实时翻译需求。现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。但遇见一些专业术语搭配复杂表达方式的文段,我说实话,我现在一般用沉浸式翻译搭配OpenAI或者DeepL的API,翻译起来还是懵逼。不过,如果你跟现在的我一样,就喜欢浏览器上苦读英文文献,也追求翻译质量,那我觉得,真的可以考虑凑合用一下我这个小破插件。
2025-12-18 12:01:57
1013
原创 金融机构如何落地智能体?16个头部企业Agent最佳实践
在此背景下,沙丘智库发布《2025年金融业智能体最佳实践报告》,深入分析智能体为金融行业带来的变革与挑战,金融业(包括银行、保险、证券等金融机构)智能体的建设进展与应用场景等,帮助金融机构了解这一新兴市场;文章分析了智能体在金融领域的应用场景及面临的挑战,并提供了多个金融机构的智能体应用案例,为金融业智能体发展提供参考。· 动态协作下,智能体可以根据环境或任务的需求灵活调整其行为和合作方式,提供了更好的灵活性,但也引入了更多的不确定性,使系统行动更难预测和控制,导致可靠性较低。方向不对,努力白费。
2025-12-12 20:18:18
1344
原创 解构多智能体系统,一篇就够了。
我认为无论是 agent 还是 multi agent system,构建原型都远比构建一个可以长期运行,不需要太多人工介入的 pipeline 简单的多。所以,在构建好原型后,如何走完从原型到产品的这最后一公里呢?科学的评估与可靠的工程化。第一步是评估,如何 agent 进行有效的评估?agent 和传统的数据结构算法或者业务代码不同。传统的软件执行通常有明确的大致(多线程/多进程可能没那么固定)可预期的步骤,比如:给定输入 X,系统应遵循路径 Y 产生输出 Z。
2025-12-12 20:17:21
687
原创 多模态RAG技术总结及知识图谱构建分割+抽取+验证三阶段思路
RAG作为一种范式,可以灵活扩展,可以来个暴力组合,写综述。变成从文本RAG到多模态输入-文本输出,再到多模态输入-多模态输出的一个演进。这块,看一个技术总结,如《》,https://doi.org/10.36227/techrxiv.176341513.38473003/v2,https://github.com/INTREBID/Awesome-MM-RAG,所有可能使用的模态组合作为输入和输出,包括文本、图像、音频、视频、代码、表格、知识图谱、3D 对象等。一共54个。看几个点。
2025-12-12 20:16:34
992
原创 程序员转行到大模型开发领域,以下是几个推荐的方向、推荐原因
每个方向都有其独特的挑战和发展机遇,程序员可以根据自己的背景和兴趣选择最适合自己的路径。无论选择哪个方向,持续学习最新的技术和保持对行业的敏感度都是非常重要的。此外,积极参与社区活动、贡献开源项目也是提升技能和个人影响力的有效方式。在大模型时代,我们如何有效的去学习大模型?现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。掌握大模型技术你还能拥有更多可能性。
2025-12-11 19:09:36
1290
原创 万字长文!从零开始构建你的第一个_ReAct_Agent
其实对于AI Agent的介绍已经非常非常多了,简单来说,AI Agent 是一种具备“感知-思考-行动”能力的智能体,它能接收任务,自动推理并调用外部工具完成复杂流程。而在众多 Agent 架构中,ReAct 框架(Reasoning + Acting)是一种非常经典的思维方式——它让大语言模型一边推理(用 Thought 表达思考过程),一边行动(用 Action 执行操作),并根据返回结果(Observation)继续决策,直到给出最终的答案。
2025-12-11 19:08:05
849
原创 企业级知识库问答系统实战:从架构到部署的完整指南,大模型入门
文章详解了大模型智能问答系统的构建全流程,涵盖架构设计、检索增强生成、性能优化、部署维护等关键技术,提供完整代码实现和解决方案,并分享AI学习路线与面试资源,助力开发者全面掌握大模型应用开发。
2025-12-11 19:06:46
582
原创 Python机器人Agent编程——实现一个本地大模型和爬虫手机号归属地天气查询系统完整实现(附源码)
在本文中,我们将逐步实现一个手机号归属地天气查询agent。这个agent将能够接收用户的手机号输入,自动查询该手机号的归属地,并进一步根据获取的城市信息查询该地区的实时天气信息。我们将使用Python语言,并结合qwen_agent库,及fastapi服务来实现这个功能。最后,我们创建一个Assistant实例,这个agent将使用我们定义的工具来处理用户的输入,并返回归属地和天气信息。# 配置LLM。
2025-12-11 19:05:30
914
原创 程序员失业后不要再去送外卖、开滴滴了,做AI大模型他不香吗?
面对失业,程序员们往往会感到迷茫和不安,尤其是那些在这个行业工作多年却仍感到未能取得满意成就的人。转行似乎是一条艰难的道路,但事实上,除了常见的选择如外卖、跑腿和网约车之外,程序员们还有更多的岗位可以选择。对于那些担心自己在原有行业无法胜任的人,转行并不意味着更大的困难。相反,这可能是一个重新审视自己职业路径和技能的机会。例如,随着人工智能技术的迅速发展,AI大模型等领域为程序员提供了新的职业方向。AI大模型等新兴技术领域的发展为程序员提供了多种职位选择。
2025-12-08 14:43:21
1293
原创 35岁程序员失业了,除了送外卖,还能做什么?
35岁程序员失业,确实是一个非常大的挑战。但危机中或许也会藏着新的机遇。重要的是,捕蝇自暴自弃,认证找准自己的方向,然后坚定的走下去。任何行业的路都不好走,只要你能保持学习的热情,不断的提升自己,年龄就不是问题。35岁,不是终点,而是新的起点。在当今的AI时代,程序员的工作模式已经受到了很大的冲击。随着AI大模型的快速发展和应用,传统初级程序员的工作确实是大受影响,这些人员的工作主要是功能实现和重复场景实现。而现在,越来越多的工具可以帮助程序员提高效率,如Github Copilot等。
2025-12-08 14:40:39
1082
原创 大模型综述:从小白到专家的完整指南,值得收藏!
随着模型和语料的扩大,大型语言模型展示了从少量上下文示例中学习的能力,这被称为上下文增强学习(ICL)。利用ICL,大型语言模型可以执行各种复杂任务,例如解决数学推理问题。ICL的基本理念是从类比中汲取经验。ICL与监督学习有一个显著的区别,就是它不需要进行参数更新,而是直接在预训练的语言模型上进行预测。ICL作为一种新的范式,具有很多天然的优势:由于演示是用自然语言编写的,因此提供了一个可解释的接口来与LLM通信。这种方法通过改变演示和模板,使得人类知识更容易融入LLM的上下文学习中。
2025-12-04 22:24:56
700
原创 问答类AI智能体评测方案
维度用来描述从哪些方面对智能体进行效果评估。通常可以分层对维度进行细化,第一层维度通常是场景,用来描述智能体可以完成哪些业务场景,第二层维度通常是任务,描述一个业务场景下需要完成的具体任务。通过对智能体进行场景和任务的拆解,可以确保更加全面地对智能体进行多方面、多维度的效果评估。维度定义对于数据集构建、指标设定具有重要参考意义。业务场景(第一层维度)任务定义(第二层维度)销售相关问题:意图识别、黑化改写、文档检索、答案生成代码相关问题:联网搜索、知识检索模型调用、答案生成文档内容洞察。
2025-12-01 18:15:55
807
原创 大龄程序员想转行大模型,应该往哪个方向转?
每个方向都有其独特的挑战和发展机遇,程序员可以根据自己的背景和兴趣选择最适合自己的路径。无论选择哪个方向,持续学习最新的技术和保持对行业的敏感度都是非常重要的。此外,积极参与社区活动、贡献开源项目也是提升技能和个人影响力的有效方式。
2025-11-26 14:58:15
271
原创 AIO Sandbox:为 AI Agent 打造的一体化沙箱环境,收藏这篇就够了
一句话介绍:AIO Sandbox 在一个沙盒内集成浏览器、代码执行、终端、可视化接管、正反向代理、MCP、鉴权等基础功能,可根据需求进行沙盒环境定制,让不同的 Agent“在一个环境容器内中更高效地完成任务”。
2025-11-22 21:53:58
1060
原创 MoE模型深度指南:架构、路由、负载均衡与视觉扩展,一篇全讲明白!
专家容量(Expert Capacity)是指单个专家在一个批次中最多能处理的 token 数量,设为。当某专家处理的 token 数量达到时,后续分配给该专家的 token 会被路由到次优专家。混合专家模型(MoE)通过 “专家分工 + 智能路由” 的核心思想,为大模型的性能提升与效率优化提供了革命性解决方案。
2025-11-22 21:50:49
921
原创 从零开始用 Python 构建一个 20 亿参数的 LLM_从零开始200行python代码实现llm gitee
让我们快速了解一下 Transformer 架构如何处理和理解文本。它通过将文本分解成更小的单元,称为 token,然后预测序列中下一个 token。一个 Transformer 包含许多层,这些层被称为 Transformer 块,它们堆叠在一起,最终一层用于进行预测。自注意力头(Self-Attention Heads):它们确定输入中的哪些部分对模型来说最重要。例如,在处理一个句子时,注意力头可以突出显示单词之间的关系,例如代词与它所指代的名词之间的关系。
2025-11-21 18:16:54
678
原创 AI Agent 路由模块的4种设计模式
路由模块是自适应智能体系统设计中的关键控制机制,路由模块可以在智能体流程里的开始或中间的多个节点实现。可以用作分类用途,也可以用来选取调用合适的工具。在实际项目情况,一般建议先用大模型模式采用提示词路由快速验证分发能力,跑通流程。如果对精确度有更高要求,可以使用嵌入路由和小模型路由进行专门优化。实际项目里可能需要搭配着几种路由一起使用。比如需要对bad case做快速干预修复时可能就会用到规则路由或者嵌入嵌入路由。如果团队有算法人员,推荐采用小模型模式,基于自身业务领域的样本进行SFT微调。
2025-11-12 18:39:12
608
原创 零基础指南:从 Prompt 到上下文工程构建AI Agent
这种从单体提示词向模块化、层次化、动态化演进的设计,正如从单体应用向微服务架构的转变,为 Agent 的高级推理、系统可扩展性与可维护性提供了结构支撑。
2025-11-12 18:38:28
931
原创 一文搞懂MCP、Function Calling和A2A
发现:客户端从 /.well-known/agent.json 获取 Agent Card,了解智能体的能力。启动处理:服务器处理任务,可能涉及流式更新或直接返回结果。交互(可选):若任务状态为 input-required,客户端可发送更多消息,使用相同 Task ID 提供输入。完成:任务达到终端状态(如 completed、failed 或 canceled)。单纯的大模型,只能对话和生成文本,是“思想的巨人,行动的矮子”。配上Agent的大模型,能感知环境、使用工具、执行任务,成为“万能助手”。
2025-11-12 18:37:13
806
原创 RAG—Chunking策略实战:RAG系统分块(chunking)技术全解析
在实际场景中,最常见的错误是按固定长度生硬切割,忽略文档的结构与语义:定义与信息被切开、表头与数据分离、步骤说明被截断、代码与注释脱节,结果就是召回命中却无法支撑结论,甚至诱发幻觉与错误引用。相反,高质量的分块应尽量贴合自然边界(标题、段落、列表、表格、代码块等),以适度重叠保持上下文连续,并保留必要的来源与章节元数据,确保可追溯与重排可用。以标题层级(H1–H6、编号标题)或语义块(段落、列表、表格、代码块)为此类型文档的天然边界,对过长的结构块再做二次细分,对过短的进行相邻合并。
2025-11-12 18:36:13
770
原创 大模型应用评估全指南(多轮对话系统、RAG、AI Agent)
这两种分数都基于 n-gram 的重叠程度进行计算。尽管比较的侧重点不同(例如,BLEU 更侧重精确率,ROUGE 更侧重召回率),但其核心思想都是:共享的词语片段越多,得分就越高。这种方式相对简单,因为如果输出文本使用了不同的措辞,得分就会较低。所有传统指标最适用于存在标准答案的应答场景,但对于如今我们构建的 LLM 应用而言,它们往往并非最合适的选择。
2025-11-11 18:53:39
1310
原创 大模型面试必考点:PPO/DPO/GRPO/DAPO算法演进全解析!
最近看大模型方向的秋招面经,发现一个很有意思的现象:面试官们对 PPO、DPO、GRPO、DAPO 简直是“爱不释手”,几乎成了大模型岗的必考题。我去知乎或者翻博客想搞懂这几个“O”的演进关系时,往往一头扎进复杂的数学公式里,看得头皮发麻。为什么我们先有了 PPO,又去卷 DPO,现在怎么又冒出来个 GRPO 和 DAPO?它们到底在解决什么问题?今天我们就来扒一扒大模型偏好对齐(Alignment)算法的演进内幕。不讲复杂的公式推导,我们只聊核心逻辑:它们到底在解决什么痛点,又引入了什么新坑?提到 RLH
2025-11-11 18:52:47
871
原创 【AI+医疗】知识图谱与大语言模型融合:破解生物医学AI的黑盒难题!
本文探讨了大语言模型在生物医学研究中的局限性,提出了通过知识图谱增强LLM可解释性的解决方案,并详细介绍了统一KG-LLM框架在生物自然语言处理中的应用前景和实践价值。
2025-11-11 18:51:48
787
原创 程序员转行AI 应用赛道太香了!!(附攻略+资源)
除了 AI 入门课程,我还给大家准备了非常全面的**「AI 大模型面试题」,**包括字节、腾讯等一线大厂的 AI 岗面经分享、LLMs、Transformer、RAG 面试真题等,帮你在面试大模型工作中更快一步。教程从当下的市场现状和趋势出发,分析各个岗位人才需求,带你充分了解自身情况,get 到适合自己的 AI 大模型入门学习路线。,规划属于你自己的大模型学习路线,并且专门提前收集了大家对大模型常见的疑问,集中解答所有疑惑!技术深度不够,涨薪难;行业迭代快,从事多年传统项目开发,想凭着技术赚钱,没想到,
2025-11-10 19:41:15
676
原创 为什么这波 AI 浪潮没有带来大量的就业岗位
好的SaaS能把数据端的活儿做到80-90分。AI服务的价值在哪儿?在很多企业眼里就是最后的10-20分。如果你对接完企业数据到不了95-100分的表现,那企业不但没付费意愿还嫌浪费时间。可是大模型不是一个标准化的组件,实际上你会发现同一个厂商同一系列下不同大模型返回的结果是没法做到完全一致的,小到输出文本的格式,大到生成结果的风格……就算你self-host了哪家的开源模型来试图维持一个稳定质量的大模型接口,不出两年这个大模型必被淘汰。不信你看看两年前多少人用Mistral和Llama,现在呢?
2025-11-10 19:40:19
672
原创 35岁程序员转型攻略:从代码到大模型,其实你比想象中更有价值!
最近收到很多程序员朋友的私信:“35岁了,真的不想再写代码了,但除了编程什么都不会,还能干什么?这种焦虑我完全理解。但说句实话,你远比自己想象的更有价值。35岁转型确实需要勇气,但绝不是走投无路。总之,各行各业都不好做,都是辛苦钱。但正因为如此,有技术背景、有解决问题能力的你,在任何领域都有机会脱颖而出。停止内耗,立刻行动。你的经验和技能比你想象的更值钱,转型的路也比你想象的更宽广。可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习。
2025-11-08 22:13:58
1069
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅