1088 三人行 (20 分)

作者: CHEN, Yue

单位: 浙江大学

时间限制: 400 ms

内存限制: 64 MB

代码长度限制: 16 KB

 

子曰:“三人行,必有我师焉。择其善者而从之,其不善者而改之。”

本题给定甲、乙、丙三个人的能力值关系为:甲的能力值确定是 2 位正整数;把甲的能力值的 2 个数字调换位置就是乙的能力值;甲乙两人能力差是丙的能力值的 X 倍;乙的能力值是丙的 Y 倍。请你指出谁比你强应“从之”,谁比你弱应“改之”。

输入格式:

输入在一行中给出三个数,依次为:M(你自己的能力值)、X 和 Y。三个数字均为不超过 1000 的正整数。

输出格式:

在一行中首先输出甲的能力值,随后依次输出甲、乙、丙三人与你的关系:如果其比你强,输出 Cong;平等则输出 Ping;比你弱则输出 Gai。其间以 1 个空格分隔,行首尾不得有多余空格。

注意:如果解不唯一,则以甲的最大解为准进行判断;如果解不存在,则输出 No Solution

输入样例 1:

48 3 7

输出样例 1:

48 Ping Cong Gai

输入样例 2:

48 11 6

输出样例 2:

No Solution

 思路:重点在于运用题目中给出的关系找出等价关系,设甲、乙、丙分别为i,j,k

           |i-j|=x*k; j=y*k;  可以得出:|i-j|*y=j*x;于是可以利用这个等式在两位正整数(10~99)中找满足此条件的甲的值。

       

代码如下:

#include<bits/stdc++.h>
using namespace std;
int m,x,y,i,j;
double A,B,C;

void compare(double t)
{
    if(t>m)  cout<<" Cong";
    else if(t<m)  cout<<" Gai";
    else   cout<<" Ping";
}

int main()
{
    cin>>m>>x>>y;
    for(int i=10;i<=99;i++)
    {
        int j=i%10*10+i/10;
            int ad=abs(i-j);
            if(ad*y==j*x)
            {
                A=i;
                B=j;
                C=j*1.0/y;
            }
    }
    if(A<10) {
        cout<<"No Solution";
    }
    else {
        cout<<A;
        compare(A);
        compare(B);
        compare(C);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值