作者: CHEN, Yue
单位: 浙江大学
时间限制: 400 ms
内存限制: 64 MB
代码长度限制: 16 KB
子曰:“三人行,必有我师焉。择其善者而从之,其不善者而改之。”
本题给定甲、乙、丙三个人的能力值关系为:甲的能力值确定是 2 位正整数;把甲的能力值的 2 个数字调换位置就是乙的能力值;甲乙两人能力差是丙的能力值的 X 倍;乙的能力值是丙的 Y 倍。请你指出谁比你强应“从之”,谁比你弱应“改之”。
输入格式:
输入在一行中给出三个数,依次为:M(你自己的能力值)、X 和 Y。三个数字均为不超过 1000 的正整数。
输出格式:
在一行中首先输出甲的能力值,随后依次输出甲、乙、丙三人与你的关系:如果其比你强,输出 Cong
;平等则输出 Ping
;比你弱则输出 Gai
。其间以 1 个空格分隔,行首尾不得有多余空格。
注意:如果解不唯一,则以甲的最大解为准进行判断;如果解不存在,则输出 No Solution
。
输入样例 1:
48 3 7
输出样例 1:
48 Ping Cong Gai
输入样例 2:
48 11 6
输出样例 2:
No Solution
思路:重点在于运用题目中给出的关系找出等价关系,设甲、乙、丙分别为i,j,k
|i-j|=x*k; j=y*k; 可以得出:|i-j|*y=j*x;于是可以利用这个等式在两位正整数(10~99)中找满足此条件的甲的值。
代码如下:
#include<bits/stdc++.h>
using namespace std;
int m,x,y,i,j;
double A,B,C;
void compare(double t)
{
if(t>m) cout<<" Cong";
else if(t<m) cout<<" Gai";
else cout<<" Ping";
}
int main()
{
cin>>m>>x>>y;
for(int i=10;i<=99;i++)
{
int j=i%10*10+i/10;
int ad=abs(i-j);
if(ad*y==j*x)
{
A=i;
B=j;
C=j*1.0/y;
}
}
if(A<10) {
cout<<"No Solution";
}
else {
cout<<A;
compare(A);
compare(B);
compare(C);
}
return 0;
}