B1088 三人行(python)

博客探讨了如何使用Python解决一个数学问题,该问题涉及三人能力值的关系。甲、乙、丙三人的能力值之间存在特定的数学关系,根据题目条件,需要找出他们相对于自己(输入值M)的强弱关系。文章提供了两种解决方案,一种是通过解方程,另一种是通过穷举法从最大可能值开始反向遍历。文章包含了样例输入和输出,并指出了解的唯一性和不存在性的情况。
摘要由CSDN通过智能技术生成

1088 三人行 (20分)
子曰:“三人行,必有我师焉。择其善者而从之,其不善者而改之。”

本题给定甲、乙、丙三个人的能力值关系为:甲的能力值确定是 2 位正整数;把甲的能力值的 2 个数字调换位置就是乙的能力值;甲乙两人能力差是丙的能力值的 X 倍;乙的能力值是丙的 Y 倍。请你指出谁比你强应“从之”,谁比你弱应“改之”。

输入格式:
输入在一行中给出三个数,依次为:M(你自己的能力值)、X 和 Y。三个数字均为不超过 1000 的正整数。

输出格式:
在一行中首先输出甲的能力值,随后依次输出甲、乙、丙三人与你的关系:如果其比你强,输出 Cong;平等则输出 Ping;比你弱则输出 Gai。其间以 1 个空格分隔,行首尾不得有多余空格。

注意:如果解不唯一,则以甲的最大解为准进行判断;如果解不存在,则输出 No Solution。

输入样例 1:
48 3 7

输出样例 1:
48 Ping Cong Gai

输入样例 2:
48 11 6

输出样例 2:
No Solution

为啥错了???
分析:
这题如果从解方程角度出发倒也没啥,但是对于代码就无法表述。由于题中已经指出甲为两位数,即在10~99之间,那么可以穷举出方程解。
再有,如果解不唯一,以甲最大解为准,所以,应当从99往前,逆向遍历~

m, x, y = map(int, input().split())

def judge(m, n):
    if m == n:
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值