卡尔曼滤波基本原理详解

概述

总的来说,卡尔曼滤波器是一个状态估计器,它利用传感器融合、信息融合来提高系统的精度。通常,我们要观测一个系统的状态,有两种手段。一种是通过系统的状态转移方程,并结合上一时刻的状态推得下一时刻的状态。一种是借助辅助系统(量测系统)的测量得到系统状态。这两种方式都有各自的不确定性,卡尔曼滤波可以将这两者做到最优结合(加权平均),使得我们估计的状态的不确定性小于其中任何一种。所以权重的选择至关重要,它意味着我们更信任哪一种方式得出的状态(当然是更加信任不确定性较小的状态)。

建模

比如,我们观测一辆小车的速度和位置(所以我们要观察的状态就是速度 v 和位置 p ,即状态 x=(v,p) ,这里的 p,v 都是向量),当我们有了 k-1 时刻的状态 =(,) 后,那么如果速度不变,我们就可以得到下一时刻的状态 =(,) ,其中

图片

当然,我们也可以对小车进行控制,比如让小车加速、拐弯等等,这些都可以用一个加速度来表示: ,这样,下一时刻状态 =(,) 的表示变为:

图片

图片

其中:

图片

但是,现实的情况并没有那么理想,小车可能会受到外界的各种扰动,比如,轮胎打滑,地面崎岖等等,都会使得状态转移的过程中混入噪音干扰(过程噪声),而且这个噪音往往是不可被测量的,也就是说,没办法通过建模消除噪音项。不过,往往我们可以认为这个噪音是服从零均值的高斯分布的。那么(1)式重写为

图片

图片

上面的状态转移方程为我们提供了观察系统状态的一种方式,同时,我们可能有一些辅助系统,比如对于这个小车,我们可以用GPS作为得到其状态的另一种方式。

那样的话,GPS每一时刻都可以提供一次当前状态的观测值  ,它与真实状态  的关系为,=+  (3)

其中的  是观测模型,它把系统真实状态空间映射成观测空间,  是噪声项,称为观测噪声——因为任何的测量系统都是有误差的,所以观测值实际上是真实值与噪声的叠加。我们同样可以认为此噪声是服从0均值的高斯分布的。即

图片

现在我们比较这两种方式得到的系统状态,容易想到,状态转移方程得到的系统状态在演变时会非常平滑,而它的不确定度会随着迭代的进行而逐渐增大,因为误差会在一次次迭代的过程中不断累积(具体反映为估计状态的方差越来越大)。相反,由量测系统得到的状态不存在累积误差,但演变时也会很不平滑。这时我们就需要将两者得到的状态有效结合起来。这就是卡尔曼滤波做的事情了。

卡尔曼滤波

图片

图片

然后我们要算出测量残差:

图片

图片

图片

第一项为0,因为  代表k时刻系统状态的真实值,是一个固定值,没有协方差。所以简化为:

图片

图片

图片

图片

图片

图片

补充内容:

图片

 

图片

另外,直观上理解:协方差矩阵代表的是数据分布的一种不确定度,这种不确定度本身不具有所谓的正负号,不可能因为加减而有所抵消。

  • 10
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

缓下脚步

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值