静音检测算法优化版本

这是一个基于频域特征的音频静音检测算法,结合短时能量、过零率、能量谱平坦度和频谱中心性,通过自适应阈值判断,适应不同噪声和音频质量。算法使用FFT计算频域特征,需要链接FFT库,并在实际应用中调整参数和优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下是一个基于频域特征的音频静音检测算法示例,该算法结合了多个特征并基于自适应阈值进行判断,能够更好地适应不同的噪声和音频质量:

#include <iostream>
#include <fstream>
#include <vector>
#include <cmath>

constexpr int kSampleRate = 16000;    // 采样率
constexpr int kFrameSize = 320;       // 帧大小(20ms)
constexpr int kSilenceDurationThreshold = 400;   // 静音时长阈值(ms)
constexpr double kSilenceEnergyFactor = 0.4;     // 静音能量因子
constexpr double kZcrFactor = 3.5;               // 过零率因子
constexpr double kSpectralFlatnessFactor = 4.5;  // 能量谱平坦度因子
constexpr double kSpectralCentroidFactor = 1.1;  // 频谱中心性因子

double ComputeShortTimeEnergy(const std::vector<short>& frame) {
    long long energy_sum = 0;
    for (const auto& sample : frame) {
        energy_sum += sample * sample;
    }
    return static_cast<double>(energy_sum) / kFrameSize;
}

double ComputeZeroCrossingRate(const std:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百鸣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值