22-spark累加器和广播变量

本文介绍了Spark中的两种重要机制——累加器和广播变量。累加器是一种分布式的变量,常用于调试时的事件计数;广播变量则为每个节点缓存不变的只读变量,用于高效分发大对象,优化资源利用。这两种机制在Spark作业执行中发挥关键作用。
摘要由CSDN通过智能技术生成

1.累加器
累加器(accumulator)是spark中提供的一种分布式的变量机制,其原理类似于MapReduce,即分布式的改变,然后聚合这些改变。累加器的一个常见用途是在调试时对作业执行过程中的事件进行计数。
在这里插入图片描述

2.广播变量
广播变量是在每个机器上缓存一份,不可变,只读的,相同的变量,该节点每个任务都能访问,起到节省资源和优化的作用。它通常用来高效分发较大的对象。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值