1、n个人中至少有2人生日相同的概率?
生日各不相同的概率:
p=(365*364*363*...*(365-(n-1)))/(365^n)
至少有2人生日相同的概率P=1-p
2.彩票原理
a只白球,b只红球,k个人依次取一个球,
(1)放回抽样;
(2)不放回抽样
第i个人取到白球(事件B)的概率?
解答:
(1)
p(B)=a/(a+b)
注:公式(4.1):
3.1~2000中随机取一个数,既不能被6整除,也不能被8整除的概率?
4. (古典概型)某接待站接待了12次一周,这12次接待都是在周二和周四进行的,问是否可以推断接待时间是有规定的?
假设接待站的接待时间没有规定,而各来访者在任一天来等可能,那么,12次接待来着都在周二周四的概率为:
2^12/7^12=0.0000003
小概率事件认为几乎不发生。
5.
条件概率表示为 P(A|B),读作“在 B 条件下 A 的概率”。P(A|B)=P(AB)/P(B),P(B|A)=P(AB)/P(A) 相互独立事件的概率 A 与 B 是相互独立的,则P(AB)=P(A)P(B),那么 A 在 B 这个前提下的条件概率就是 A 自身的概率;
同样,B 在 A 的前提下的条件概率就是 B 自身的概率。即P(A|B) = P(A),P(B|A) = P(B)
乘法定理设P(A)>0,则有P(AB)=P(B|A)P(A)。推广到多个事件的积事件的情况。设A,B,C为事件,且P(AB)>0,则有P(ABC)= P(C|AB)P(B|A)P(A)。例子:
设袋中装有r只红球,t只白球。每次自袋中任取一只球,观察其颜色然后放回,并再放入a只与所取出的那只球同色的球。
若在袋中连续取球四次,试求第一、二次取到红球且第三、四次取到白球的概率。

6。
全概率公式:

贝叶斯公式:

常用的公式:

对以往数据分析结果表明,当机器调整达良好时,产品的合格率为90%,而机器发生某一故障时,产品的合格率为30%。每天早上机器开动时,机器调整达良好的概率为75%。已知某日早上第一件产品是合格品,试求机器调整达良好的概率。7.相互独立事件同时发生的概率P(A*B) =P(A) *P(B)
一个元件(或系统)能正常工作的概率称为元件的可靠性,设有独立工作的元件1.2.3.4按先串联再并联的方式链接。设第i个元件的可靠性为pi(i=1,2,3,4)试求系统的可靠性。解:以Ai(i=1,2,3,4)表示事件“第i个元件正常工作”,A表示“系统正常工作” 系统由两条线路I和II组成,当且仅当至少有一条线路中的两个元件均正常工作时这个系统正常工作,固有:
![]()
8.掷两颗骰子,已知两颗骰子点数和为7,求其中有一颗为1点的概率(用两种方法)
解 令事件 A={两颗骰子点数之和为 7},B={有一颗为 1 点}。此题是求条件概率 P ( B A) 。 两种方法如下: ①考虑整个样本空间。随机试验:掷两颗骰子,每颗骰子可能出现的点数都是6个, 即样本空间S={6 ^2个基本事件}。事件 AB={两颗骰子点数之间和为 7,且有一颗为 1 点}, 两颗骰子点数之和为7的可能结果为6个,即A={(1,6),(2,5),(3,4),(6,1),(5,2),
(4,3)}而AB= {(1,6),(6,1)}。由条件概率公式,得