1. 双核处理
一种双核CPU的两个核能够同时处理任务,现在有n个已知数据量的任务需要交给CPU处理,
假设已知CPU的每个核1秒可以处理1kb,每个核同时只能处理一项任务。n个任务可以按照
任意顺序放入CPU进行处理,现在需要设计一个方案让CPU处理完这批任务所需的时间最少,
求这个最小的时间
输入描述:
输入包括两行:
第一行为整数n(1 <= n <= 50)
第二行为n个整数length[i](1024 <= length[i] <= 4194304),表示每个任务的长度为length[i]kb,
每个数均为1024的倍数。
输出描述:
输出一个整数,表示最少需要处理的时间
输入例子:
5
3072 3072 7168 3072 1024
输出例子:
9216
//动态规划
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n;
cin>>n;
vector<int> arr(n);
int sum = 0;
for(int i=0; i<n; i++)
{
cin>>arr[i];
arr[i] >>= 10;
sum += arr[i];
}
// dp[j]表示在容量为j的情况下可存放的重量
// 如果不放arr[i]重量为dp[j],如果放arr[i]重量为dp[j-arr[i]] + arr[i];
vector<int> dp(sum/2 + 1);
for(int i=0; i<n; i++)
{
for(int j=sum/2; j>=arr[i]; j--)
dp[j] = max(dp[j], dp[j-arr[i]] + arr[i]);
}
cout<<(max(dp[sum/2], sum - dp[sum/2]) << 10)<<endl;
return 0;
}
2.赶去公司
终于到周末啦!小易走在市区的街道上准备找朋友聚会,突然服务器发来警报,小易需要
立即回公司修复这个紧急bug。假设市区是一个无限大的区域,每条街道假设坐标是(X,Y),
小易当前在(0,0)街道,办公室在(gx,gy)街道上。小易周围有多个出租车打车点,小易赶去
办公室有两种选择,一种就是走路去公司,另外一种就是走到一个出租车打车点,然后从打
车点的位置坐出租车去公司。每次移动到相邻的街道(横向或者纵向)走路将会花费walkTime
时间,打车将花费taxiTime时间。小易需要尽快赶到公司去,现在小易想知道他最快需要花费
多少时间去公司。
输入描述:
输入数据包括五行:
第一行为周围出租车打车点的个数n(1 ≤ n ≤ 50)
第二行为每个出租车打车点的横坐标tX[i] (-10000 ≤ tX[i] ≤ 10000)
第三行为每个出租车打车点的纵坐标tY[i] (-10000 ≤ tY[i] ≤ 10000)
第四行为办公室坐标gx,gy(-10000 ≤ gx,gy ≤ 10000),以空格分隔
第五行为走路时间walkTime(1 ≤ walkTime ≤ 1000)和taxiTime(1 ≤ taxiTime ≤ 1000),以空格分隔
输出描述:
输出一个整数表示,小易最快能感到办公室的时间
输入例子:
2
-2 -2
0 -2
-4 -2
15 3
输出例子
42
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n, tx[60], ty[60];
int gx, gy;
int walkTime, taxiTime;
cin>>n;
for(int i=0; i<n; i++)
cin>>tx[i];
for(int i=0; i<n; i++)
cin>>ty[i];
cin>>gx>>gy;
cin>>walkTime>>taxiTime;
int ans = (abs(gx - 0) + abs(gy - 0)) * walkTime;
int curCost = 0;
for(int i=0; i<n; i++)
{
curCost = (abs(tx[i] - 0) + abs(ty[i] - 0)) * walkTime
+ (abs(gx - tx[i]) + abs(gy - ty[i])) * taxiTime;
ans = min(ans, curCost);
}
cout<<ans<<endl;
return 0;
}
3.调整队形
在幼儿园有n个小朋友排列为一个队伍,从左到右一个挨着一个编号为(0~n-1)。其中有一些是
男生,有一些是女生,男生用'B'表示,女生用'G'表示。小朋友们都很顽皮,当一个男生挨着的
是女生的时候就会发生矛盾。作为幼儿园的老师,你需要让男生挨着女生或者女生挨着男生的
情况最少。你只能在原队形上进行调整,每次调整只能让相邻的两个小朋友交换位置,现在需要
尽快完成队伍调整,你需要计算出最少需要调整多少次可以让上述情况最少。例如:
GGBBG -> GGBGB -> GGGBB
这样就使之前的两处男女相邻变为一处相邻,需要调整队形2次
输入描述:
输入数据包括一个长度为n且只包括G和B的字符串. n不超过50.
输出描述:
输出一个整数,表示最少需要的调整队伍的次数
输入例子:
GGBBG
输出例子:
2
// 目标状态只有两种可能,形如:BBBBG