【推荐算法论文】AutoRec

论文背景

AutoRec - Autoencoders Meet Collaborative Filtering
WWW’15
作者:Suvash Sedhain, Aditya Krishna Menon, Scott Patrick Sanner, Lexing Xie

谷歌学术引用次数580(截至2021年2月4日)

关键词:Recommender Systems; Collaborative Filtering; Autoencoders

INTRODUCTION 引言

本文提出一种新的基于自动编码器范例的CF模型,思路来自于针对视觉和语音任务的深度神经网络模型。
和CF相比,具有表示和计算的优越性。

THE AUTOREC MODEL 模型

每个用户U={1,…,m}可表示为 r ( i ) = ( R u 1 , . . . , R u n ) ∈ R n r^{(i)} = (R_{u1},...,R_{un})∈\mathbb{R}^n r(i)=(Ru1,...,Run)Rn
每个物品I={1,…,n}可表示为 r ( i ) = ( R 1 i , . . . , R m i ) ∈ R m r^{(i)} = (R_{1i},...,R_{mi})∈\mathbb{R}^m r(i)=(R1i,...,Rmi)Rm,评分矩阵R。
目标:设计一种基于物品(用户)的自动编码器,可以输入部分显式 r ( i ) r_{(i)} r(i)( r ( u ) r_{(u)} r(u)),将其映射到低维潜在空间,然后在输出空间重建 r ( i ) r_{(i)} r(i)( r ( u ) r_{(u)} r(u))来预测缺失的评分用于推荐。
自动编码器解决
m i n θ ∑ r ∈ S ∣ ∣ r − h ( r ; θ ) ∣ ∣ 2 2 min_{\theta}\sum_{r∈S}||r - h(r;\theta)||^2_2 minθrSrh(r;θ)22
h ( r ; θ ) h(r;\theta) h(r;θ)是输入r的重构
h ( r ; θ ) = f ( W ⋅ g ( V r + μ ) + b ) h(r;\theta) = f(W · g(Vr + μ) + b) h(r;θ)=f(Wg(Vr+μ)+b)
f、g是激活函数。 θ = { W , V , μ , b } \theta = \{W, V, μ, b\} θ={W,V,μ,b}
W ∈ R d × k W∈\mathbb{R}^{d×k} WRd×k, V ∈ R k × d V∈\mathbb{R}^{k×d} VRk×d, μ ∈ R k μ∈\mathbb{R}^k μRk, b ∈ R d b∈\mathbb{R}^d bRd
该目标对应于具有单个k维隐藏层的自连接神经网络。使用反向传播来学习参数θ。

基于物品的AutoRec模型I-AutoRec
r ( i ) i = 1 n {r^{(i)}}^n_{i=1} r(i)i=1n
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8PugB0Fx-1634386976573)(\images\Paper-AutoRec-Itembased.png)]
两点改变:

  1. 每个 r ( i ) r^{(i)} r(i)通过反向传播更新和输入有关的权重得到,这在矩阵分解和RBM策略中常用。
  2. 设计了学习参数正则化防止过拟合。

I-AutoRec需要估计2mk + m + k个参数。
对于给定的已学习参数 θ \theta θ,对于用户u和物品i的预测评分为
R ^ u i = ( h ( r ( i ) ; θ ^ ) ) u \hat{R}_{ui} = (h(r^{(i)};\hat{\theta}))_u R^ui=(h(r(i);θ^))u

目标函数:
m i n θ ∣ ∣ r ( i ) − h ( r ( i ) ; θ ) ∣ ∣ o 2 + λ 2 ⋅ ( ∣ ∣ W ∣ ∣ F 2 + ∣ ∣ V ∣ ∣ F 2 ) min_{\theta}||r^{(i)}-h(r^{(i)};\theta)||^2_o + \frac{\lambda}{2}·(||W||^2_F + ||V||^2_F) minθr(i)h(r(i);θ)o2+2λ(WF2+VF2)
∣ ∣ ∣ ∣ o 2 ||||^2_o o2代表只考虑可观测评分的贡献。

基于用户的AutoRec模型U-AutoRec
r ( u ) u = 1 m {r^{(u)}}^m_{u=1} r(u)u=1m

和CF策略的区别:
对比基于RBM的CF模型(RBM-CF)

  1. RBM-CF是基于限制玻尔兹曼机的生成概率模型,AutoRec是一个基于自动编码器的判别模型。
  2. RBM-CF通过最大化似然log函数估计参数,AutoRec直接最小化RMSE。
  3. 训练RBM-CF需要使用对比散度,训练AutoRec需要相对更快的基于梯度的反向传播。
  4. RBM-CF只使用于离散评分,并对每个评分估计一个分散的参数集。对r个可能的评分,它使用了基于RBM的nkr或者mkr个参数用于用户(物品)。AutoRec与r无关,因此需要较少的参数。 较少的参数使AutoRec的内存占用量更少,更不容易过度拟合。

对比矩阵分解(MF)
MF学习线性潜在表示,AutoRec可以通过激活函数学习非线性潜在表示。

EXPERIMENTAL EVALUATION 实验评估

基线:RBM-CF, BiasedMF, LLORMA.
数据集:Movielens 1M, 10M 和Nerflix数据集
没有训练数据的测试集默认评分为3。
训练集:测试集=9:1
将训练集10%作为验证集。
重复划分步骤5次并记录平均RMSE。
每次实验95%在RMSE偶然的间隔在±0.003之间。
正则化参数λ∈{0.001, 0.01, 0.1, 1, 100, 1000}
潜在维度k∈{10, 20, 40, 80, 100, 200, 300, 400, 500}

三种实验

  1. 和RBM对比
  2. 激活函数选取对比
  3. 隐藏单元k的数量
    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8U7Lw2Fr-1634386976581)(\images\Paper-AutoRec-k.png)]
  4. 基线性能对比
    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Xg9TrHC3-1634386976592)(\images\Paper-AutoRec-baselines.png)]
  5. 深度扩展对Auto的帮助

代码

https://github.com/mesuvash/NNRec

总结

AutoRec是最简单的深度学习推荐系统。
它是一种单隐层神经网络推荐模型,将自动编码器与协同过滤相结合。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值