【应用统计学】参数统计-点估计与估计量的评价标准

本文介绍了参数统计中的点估计概念,即利用样本构造统计量来估计总体未知参数。讨论了估计量的三个重要评价标准:无偏性,意味着估计量的期望值等于参数真实值;有效性,比较无偏估计量的方差以选择离散程度小的;一致性,当样本量增加时,估计量趋向于参数真值。这些标准帮助我们评估和选择更好的估计方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、点估计

参数的点估计就是根据样本构造一个统计量,作为总体未知参数的估计。这个统计量称为未知参数的估计量。

在统计中,经常使用的点估计量有:

 二、估计量的评价标准

1、无偏性

无偏性即指估计量抽样分布的数学期望等于总体参数的真值。

2、有效性

如果两个估计量都是无偏的,那么离散程度较小的估计量相对来说是更有效的。对于离散程度,我通常使用方差来衡量。 比如,简单算术平均数和加权平均数,它们都具有无偏性。但是简单算术平均数的方差比加权平均数小。因此,我们应该选简单算术平均数。

3、一致性

随着样本量的增大,估计量的值本身如果稳定于总体参数的真值,那么这个估计量就有一致性。即:随着样本量的无限增加,样本估计量就充分靠近总体参数,该统计量满足一致性的要求。样本越大估计越准确。

更多内容,请参考《估计量的有效性和一致性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值