顾名思义,数据分析就是采用适当的方法对收集来的大量数据进行分解和研究,然后提取出有价值的信息。例如:
大型商超会采集顾客的购物数据,分析顾客的消费习惯,然后调整商品的摆放位置,提高商品的销量;
互联网公司会采集用户的点击数据,分析用户的行为习惯,然后调整 APP 的菜单布局,提升用户体验。
也就是说,数据分析的最终目的是为决策者提供数据支撑,辅助决策者做出正确的判断,而不是拍脑袋决定。
数据分析几乎涵盖了所有领域,包括新媒体、金融、教育、医疗、物流等。很多招聘岗位都更加青睐了解数据分析的求职者,比如人事、财务、运营等;与此同时,了解数据分析也更容易获得升职和加薪的机会。
近年来随着互联网的快速发展,人们每时每刻都在产生大量数据,根据 IDC(国际数据公司)的预测,2025 年全球一年新产生的数据量将达到 175ZB,相当于每天新产生 491EB 的数据。
175ZB 的数据量有多庞大呢?1ZB 约等于 1.1 万亿 GB,假设网速为 25MB/秒, 那么一个人下载完 175ZB 的数据需要 18 亿年。
数据量的激增给数据分析师带来了前所未有的历史机遇。目前,数据分析在国内尚处于起步阶段,人才缺口大、薪资待遇高,应届生就可以拿到 20W 的年包,如果能进入大厂,年包可能会超过 30W。
总之,现在入局数据分析行业,无论是前景还是“钱景”都非常不错。
关于学习路线
这是一套非常详细的数据分析学习路线,它坚持实用主义,追求前沿技术,不但为初学者规划好了具体的学习步骤,