[BZOJ 1421] A Modular Arithmetic Challenge 题解

题意

给定 M , D , L , R M,D,L,R M,D,L,R,求 L ≤ D x   m o d   M ≤ R L\leq Dx\bmod M\leq R LDxmodMR 的最小正整数解。

Solution

先考虑平凡的做法。

L L L 枚举到 R R R,每一个都跑一次扩展欧几里得,时间复杂度 O ( R − L + 1 log ⁡ ( R − L + 1 ) ) O(R-L+1\log (R-L+1)) O(RL+1log(RL+1)),一看数据范围 1 0 9 10^9 109,可以考虑丢掉这种算法。

既然没办法用同余方程解决,那我们考虑将   m o d   \bmod mod 变成减法的形式。

L ≤ D x   m o d   M ≤ R L\leq Dx\bmod M\leq R LDxmodMR

L ≤ D x − M y ≤ R L\leq Dx-My\leq R LDxMyR

其中那个 y y y 是个整数。我们只要求出这个 y y y 就能求出 x x x

现在移项,得到:

L − D x ≤ − M y ≤ R − D x L-Dx\leq -My\leq R-Dx LDxMyRDx

− R + D x ≤ M y ≤ − L + D x -R+Dx\leq My\leq -L+Dx R+DxMyL+Dx

y y y 的话我们就不能出现 x x x。尝试取模,同时   m o d     D \bmod\ D mod D 可以消去 x x x,得到:

( − R )   m o d   D ≤ M y   m o d   D ≤ ( − L )   m o d   D (-R)\bmod D\leq My\bmod D\leq (-L)\bmod D (R)modDMymodD(L)modD

ohhhhhhhhh!这个形式跟我们的 L ≤ D x   m o d   M ≤ R L\leq Dx\bmod M\leq R LDxmodMR 是完全一致的!所以我们可以考虑使用递归求解。

设有函数 s o l v e ( d , m , l , r ) solve(d,m,l,r) solve(d,m,l,r) 求解的是 L ≤ D x   m o d   M ≤ R L\leq Dx\bmod M\leq R LDxmodMR x x x 的最小正整数解,那么我们递归进去就应该是 s o l v e ( m   m o d   d , d , ( − r )   m o d   d , ( − l )   m o d   d ) solve(m\bmod d,d,(-r)\bmod d,(-l)\bmod d) solve(mmodd,d,(r)modd,(l)modd)。注意,因为取模的可乘性,所以 m m m 是可以   m o d     d \bmod\ d mod d 的。

这个函数的复杂度显然是正确的,与辗转相除有异曲同工之妙。

写的时候注意向下取整的问题,不然你会像我这样一直差 1 1 1,急的像个猴子:link

代码:

#include<bits/stdc++.h>
#define ll long long
using namespace std;

int T;

ll solve(ll d, ll m, ll l, ll r){
	if(!d || l > r)
		return -1;
	ll x = (l - 1) / d + 1;
	if(x * d <= r)
		return (x % m + m) % m;
	ll p = solve(m % d, d, ((-r) % d + d) % d, ((-l) % d + d) % d);
	if(p == -1)
		return -1;
	return ((((l - 1) + m * p) / d + 1) % m + m) % m;
}

int main(){
	scanf("%d", &T);
	while(T--){
		ll m, d, l, r;
		scanf("%lld%lld%lld%lld", &m, &d, &l, &r);
		r = min(m - 1, r);
		printf("%lld\n", solve(d, m, l, r));
	}
	return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值