输入形式:
6
输出形式:
6
5+1
4+2
4+1+1
3+3
3+2+1
3+1+1
2+2+2
2+2+1+1
2+1+1+1+1
1+1+1+1+1+1
解题思路:
首先,观察输出的结果。
6的本身也算作6的一个划分。
并且,每个划分中,前面的数一定大于等于后面的数。比如5+1,5>=1; 3+3,3>=3。从上到下,每个划分开头的第一个数也依次递减。
每个划分的长度一定小于等于这个数本身,比如6最长的划分就是1+1+1+1+1+1,长度为6。
观察到这些个条件之后,开始构思解题思路:
既然要打印所有的划分,那么就用一个数组来记录,比如5+1,那么数组里面就记录5和1。于是,接下来的工作就变成了把数字装进数组了,用一个数来存放当前应该往数组的第几个位置放入数字,然后用一个数来记录此时数组的数相加的总和。
我们从6到1,依次枚举,如果当前选中的数和数组里已有的数相加正好等于待划分的数(指的是例子中的6),那么这个划分就完成了,输出打印,回溯到上一个,并且搜索下一个数。注意,你一定要保证后面的数小于等于前面的数,因为1+2+3和3+2+1是一样的。
所谓回溯,举一个非常简单的例子就是3+3和3+2+1。
当你搜索到3+3时,这个时候等于6了,那么这是一个完整的划分,输出打印;
接着回溯到上一个,也就是第一个3,这时候选中了2,3+2=5<6,所以接着向下搜,找到1,3+2+1=6,这又是一个完整的划分,输出打印;
#include <iostream>
#define N 100
using namespace std;
//dfs深度优先搜索
//实现整数划分的输出
int mark[N]={0};
void print(int n)
{
int i=0;
for(;i<n-1;i++)
{
cout<<mark[i]<<'+';
}
cout<<mark[i]<<endl;
}
void dfs(int x,int sum,int k)//x为需要划分的数,sum为当前选中数之和,k为当前应该选第几个数
{
if(sum>x)
return;
if(sum==x)
{
print(k);
return;
}
for(int i=mark[k-1];i>0;i--)//倒序枚举分叉处的所有情况
{
mark[k]=i;
sum+=i;
dfs(x,sum,k+1,i);
sum-=i;//回溯,到下一条分支
}
}
int main()
{
int n;
cin>>n;
dfs(n,0,0);
return 0;
}