炸铁路
题目描述
A 国派出将军uim,对 B 国进行战略性措施,以解救涂炭的生灵。
B 国有 nnn 个城市,这些城市以铁路相连。任意两个城市都可以通过铁路直接或者间接到达。
uim 发现有些铁路被毁坏之后,某两个城市无法互相通过铁路到达。这样的铁路就被称为 key road。
uim 为了尽快使该国的物流系统瘫痪,希望炸毁铁路,以达到存在某两个城市无法互相通过铁路到达的效果。
然而,只有一发炮弹(A 国国会不给钱了)。所以,他能轰炸哪一条铁路呢?
输入格式
第一行 nnn,m(1≤n≤150m (1 \leq n\leq 150m(1≤n≤150,1≤m≤5000)1 \leq m \leq 5000)1≤m≤5000),分别表示有 nnn 个城市,总共 mmm 条铁路。
以下 mmm 行,每行两个整数 a,ba, ba,b,表示城市 aaa 和城市 bbb 之间有铁路直接连接。
输出格式
输出有若干行。
每行包含两个数字 aaa,bbb,其中 a<ba<ba<b,表示 <a,b><a,b><a,b> 是 key road。
请注意:输出时,所有的数对 <a,b><a,b><a,b> 必须按照 aaa 从小到大排序输出;如果aaa 相同,则根据 bbb 从小到大排序。
样例 #1
样例输入 #1
6 6
1 2
2 3
2 4
3 5
4 5
5 6
样例输出 #1
1 2
5 6
题解:
#include <iostream>
#include <algorithm>
using namespace std;
int n, m; bool ans[151][151] = { 0 };
int cnt = 0, head[151] = { 0 };
int low[151], dfn[151] = { 0 }, times = 0, fa[151] = { 0 };
struct Edge {
int to, next;
}e[10001];
void add_edge(int u, int v) {
cnt++;
e[cnt].to = v;
e[cnt].next = head[u];
head[u] = cnt;
}
void tarjan(int u) {
low[u] = dfn[u] = ++times;
for (int i = head[u]; i; i = e[i].next) {
int v = e[i].to;
if (!dfn[v]) {
fa[v] = u;
tarjan(v);
low[u] = min(low[u], low[v]);
//v可回溯到的最早的时间点必须大于dfn[u]
if (dfn[u] < low[v]) {
ans[u][v] = 1;
}
}
//如果v不是u的父亲(无向图双向可达的性质),则维护low[u]
else if (v != fa[u])
low[u] = min(low[u], dfn[v]);
}
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= m; i++) {
int t1, t2; cin >> t1 >> t2;
add_edge(t1, t2);
add_edge(t2, t1);
}
for (int i = 1; i <= n; i++) {
if (!dfn[i]) {
tarjan(i);
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (ans[i][j] == 1) {
if (i > j)
cout << j << ' ' << i << endl;
else
cout << i << ' ' << j << endl;
}
}
}
return 0;
}
一发炮弹瘫痪铁路网络:关键道路寻找算法解析
本文介绍了如何使用Tarjan算法解决在一国铁路网络中找到一条关键铁路,使得破坏这条铁路会导致至少两个城市无法互相到达的问题。通过深度优先搜索和强连通分量的概念,实现了一种高效的方法来找出这样的关键路径。算法细节包括建立边的邻接表、 Tarjan算法的实现过程以及输出关键路径。这个算法在物流系统分析和网络故障定位中具有重要应用。
2904

被折叠的 条评论
为什么被折叠?



