URIEncoding与useBodyEncodingForURI 在tomcat中文乱码处理上的区别

大家知道tomcat5.0开始,对网页的中文字符的post或者get,经常会出现乱码现象。

具体是因为Tomcat默认是按ISO-8859-1进行URL解码,ISO-8859-1并未包括中文字符,这样的话中文字符肯定就不能被正确解析了。

常见的解决方法是在tomcat的server.xml下的connetor属性中增加URIEncoding或者useBodyEncodingForURI属性。

但是,这两种方式有什么区别呢?

我简单谈一下自己的理解:

按照tomcat-docs/config/http.html文档的说明

URIEncoding:This specifies the character encoding used to decode the URI bytes, after %xx decoding the URL. If not specified, ISO-8859-1 will be used.

useBodyEncodingForURI:This specifies if the encoding specified in contentType should be used for URI query parameters, instead of using the URIEncoding.

 

也就是说,

 useBodyEncodingForURI参数表示是否用request.setCharacterEncoding 
参数对URL提交的数据和表单中GET方式提交的数据进行重新编码,在默认情况下,该参数为false。

URIEncoding参数指定对所有GET方式请求进行统一的重新编码(解码)的编码。

 

URIEncoding和useBodyEncodingForURI区别是,

URIEncoding是对所有GET方式的请求的数据进行统一的重新编码,

而useBodyEncodingForURI则是根据响应该请求的页面的request.setCharacterEncoding参数对数据进行的重新编码,不同的页面可以有不同的重新编码的编码

相关推荐
<p> 课程演示环境:Windows10  </p> <p> 需要学习<span>Ubuntus</span>系统<span>YOLOv4-tiny</span>同学请前往《<span>YOLOv4-tiny</span>目标检测实战:训练自己数据集》 <span></span> </p> <p> <span> </span> </p> <p> <span style="color:#E53333;">YOLOv4-tiny</span><span style="color:#E53333;">来了!速度大幅提升!</span><span></span> </p> <p> <span> </span> </p> <p> <span>YOLOv4-tiny</span><span>COCO</span>性能可达到:<span>40.2% AP50, 371 FPS (GTX 1080 Ti)</span>。相较于<span>YOLOv3-tiny</span>,<span>AP</span>和<span>FPS</span>性能有巨大提升。并且,<span>YOLOv4-tiny</span>权重文件只有<span>23MB</span>,适合移动端、嵌入式设备、边缘计算设备部署。<span></span> </p> <p> <span> </span> </p> <p> 本课程将手把手地教大家使用<span>labelImg</span>标注和使用<span>YOLOv4-tiny</span>训练自己数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。<span></span> </p> <p> <span> </span> </p> <p> 本课程<span>YOLOv4-tiny</span>使用<span>AlexAB/darknet</span>,<span>Windows10</span>系统做项目演示。包括:<span>YOLOv4-tiny</span>网络结构、安装<span>YOLOv4-tiny</span>、标注自己数据集、整理自己数据集、修改配置文件、训练自己数据集、测试训练出网络模型、性能统计<span>(mAP</span>计算<span>)</span>和先验框聚类分析。 <span> </span> </p> <p> <span> </span> </p> <p> 除本课程《<span>Windows</span>版<span>YOLOv4-tiny</span>目标检测实战:训练自己数据集》外,本人推出了有关<span>YOLOv4</span>目标检测系列课程。请持续关注该系列其它视频课程,包括:<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:训练自己数据集》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:人脸口罩佩戴识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:中国交通标志识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测:原理源码解析》<span></span> </p> <p> <span> <img alt="" src="https://img-bss.csdnimg.cn/202007061503586145.jpg" /></span> </p> <p> <span><img alt="" src="https://img-bss.csdnimg.cn/202007061504169339.jpg" /><br /> </span> </p>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页