Z-scan方阵
总时间限制: 1000ms 内存限制: 1024kB
描述
Z-scan方阵是一种边长为2n的方阵。例如,边长为2,4,8的Z-scan方阵为:
即按照类似于“之”字形的方式,将0到2n×2n-1依次放置到方阵中。类似地,按照此规律继续放置,可以产生出边长为16,32,…等的Z-scan方阵。
现在给定非负数n和m,请求出数m位于边长为2n的Z-scan方阵的行数和列数。例如当n=2,m=13时应当返回3和4,表示13位于方阵的第3行第4列。保证n不超过10,m小于2n×2n。
输入
输入包含多行,每行两个非负数n和m,中间用空格隔开
当n和m都为0时,表示输入结束,该组输入不用处理
输出
输出包含多行,每行两个整数,表示数m位于边长为2的n次方的Z-scan方阵的行数和列数,中间用空格隔开
样例输入
1 3
2 13
0 0
样例输出
2 2
3 4
我的
#include <stdio.h>
#include<math.h>
#include<string.h>
int main()
{
int m, n;
while (1)
{
scanf("%d%d", &n, &m);
if (m == 0 && n == 0)return 0;
if (m == 0)printf("1 1\n");//边界条件:因为pow(2,0)=1,所以需要补充一个small=0的情况(也就是没有更小的单元的情况)
else
{
for (int i = 0; i <= n; i++)
{
int small = (int)pow(2, i);
if (small * small <= m && m < small * small * 4)
{
int hang, lie;
if (small * small <= m && m < small * small * 2)
{
int tmp = m - small * small