- 博客(38)
- 收藏
- 关注
原创 win10 vs2013编译caffe-cpu pycaffe
记录下编译caffe的过程。windows10 64位(本来电脑是32位的,编译一直出错,后重装64位)VS2013caffe-master https://github.com/microsoft/caffe(之前看别人博客发的百度云链接,是15个项目,这个16个,没有对比过有何不同)python27 确保有numpy包(没有试过python37是否可以)1.重命名caffe-mas...
2020-04-03 16:54:25 377
原创 jpeg压缩简单介绍及huffman table
一、jpeg压缩流程的简单介绍jpeg压缩是基于YUV颜色空间进行压缩编码的,首先将RGB转化成YUV,然后将像素值减去128,将像素值转化到范围-128~127。后要进行采样,一般来说有3中采样方式:4:4:4,4:2:2和4:1:1;4:4:4即不进行下采样,4:1:1是指一个2x2的单元,采样4个Y,1个V和1个U(具体想了解采样的可以看下其它博客)。后直接进行8x8的DCT变换,将时域像...
2020-02-05 17:51:15 6250 1
原创 google chrome 截图
百度了下浏览器下怎么截取长图,发现一种方法特别好用,而且不用下载插件。按F12打开开发者工具界面2.按Ctrl+Shift+P,出现Panel3.输入 capture full size screenshot(一般输出cap就会出现选项)回车就下载了整个界面图片下载的图片如果不是要截取整个屏幕,而是部分屏幕,点击Elements界面,选择要下载的区域,例如main区域然...
2019-05-29 17:17:59 833
原创 Versatile Video Coding(VVC)总结
(参考的VTM2,可能不准确,选择性阅读)一、VVC 编码结构基于块的分层编码结构。VTM2的编码结构如下图所示:二、分块CTU图像被分成一系列的树形编码单元(CTU),CTU的概念和HEVC的相同。一个CTU包含一个NxN的亮度分量和两个对应的色度分量。最大的CTU块的亮度分量是128x128。CU在HEVC中CTU使用四叉树结构划分成多个CU。每一个CU进一步分成一个、两个或四...
2019-04-02 18:46:55 3405
原创 排序算法
若序列中i.key == j.key(即序列中两个记录的关键字相等),在排列之前i<j;若排列之后仍然有i<j,则称该排序方法是稳定的。反之,若排序之后i可能大于j,则称排序算法是不稳定的。直接插入排序基本思想:将一个记录插入到已经排好序的有序表中。稳定 时间复杂度:O(n2)O(n^{2})O(n2)代码:void InsertSort(int num[], int n)...
2019-03-18 17:42:19 174
原创 哈夫曼编码代码
给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树。由此得到的二进制前缀编码称为哈夫曼编码。例如权w={5,29,7,8,14,23,3,11},8个结点,构造的哈夫曼树如下图所示:算法实现如下:typedef struct { unsigned int weight; unsigned int paren...
2019-03-18 10:56:54 5188
原创 二叉树的先序、中序、后序、分层遍历
先序遍历(DLR)二叉树的操作为:若二叉树为空,则空操作;否则:(1)访问根节点(2)先序遍历左子树(3)先序遍历右子树中序遍历(LDR)二叉树的操作为:若二叉树为空,则空操作;否则:(1)中序遍历左子树(2)访问根节点(3)中序遍历右子树后序遍历(DLR)二叉树的操作为:若二叉树为空,则空操作;否则:(1)后序遍历左子树(2)后序遍历右子树(3)访问根节点假设一个二...
2019-03-16 12:00:59 424
原创 神经网络Inter:NEURAL NETWORK BASED INTER PREDICTION FOR HEVC
NEURAL NETWORK BASED INTER PREDICTION FOR HEVCHEVC中的Inter预测只使用了时域信息,没有参考空域信息。作者提出一种网络结构NNIP(neural network based inter prediction)使用时域和空域进行提高Inter的质量,包含两个网络,一个全连接网络(FCN),一个卷积网络(CNN)。时域信息和空域信息作为FCN的输...
2019-01-24 20:46:45 744
原创 神经网络后处理:A PRACTICAL CONVOLUTIONAL NEURAL NETWORK AS LOOP FILTER FOR INTRA FRAME
A Practical Convolutional Neutral Network As Loop Filter for Intra Frame以往的视频编码后处理的神经网络模型在实际应用中存在问题:一是:使用不同QP的编码帧使用不同的模型,硬件上贵。二是:在不同平台上的编解码端的CNN的浮点运算可能导致不连续性。三是:CNN模型有冗余,消耗资源。所以作者提出的网络旨在单个,低冗余,并且适应不...
2019-01-23 15:57:45 1261 1
原创 神经网络后处理:A New HEVC In-Loop Filter Based on Multi-channel Long-Short-term Dependency Residual Network
A New HEVC In-Loop Filter Based on Multi-channel Long-Short-term Dependency Residual Networks基于MLSDRN(multi-channel long-short-term dependency residual network)提出的HEVC环内滤波。作者提出MLSDRN解决以往神经网络实现后处理的两个问...
2019-01-23 14:59:52 832
原创 神经网络后处理:A Convolutional Neural Network Approach for Post-Processing in HEVC Intra Coding
AR-CNN(Artifact reduction):只适用于JPEG压缩四层全卷积层,没有pooling和全连接层,输入和输出是相同size。网络结构如下:g()是非线性mapping函数,在AR-CNN中是ReLU函数,即g(x)=max(0,x)g(x)=max\left ( 0,x \right )g(x)=max(0,x)。AR-CNN的配置如下图所示:4层卷积分别实现:特征...
2019-01-23 10:43:37 3296 3
原创 VGG
Very Deep Convolutional Networks For Large-Scale Image Recogntion一、摘要VGG的主要贡献是表明:通过增加网络深度并且使用非常小的卷积核对网络效果有很大的改善。二、简介通过增加深度和使用小卷积核搭建的网络不仅在ILSVRC数据集上表现好,同样也使适用其它数据集。三、ConvNet结构这一节详细描述了ConvNet的网络结构...
2019-01-16 13:48:14 2495
原创 二阶、三阶矩阵求逆
矩阵A=(a11a12a13a21a22a23a31a32a33)A = \begin{pmatrix}a_{11} &amp; a_{12} &amp; a_{13}\\ a_{21}&amp; a_{22} &amp; a_{23}\\ a_{31}&amp; a_{32} &amp; a_{33}\end{pmatrix}A=⎝⎛...
2019-01-15 12:49:09 25040
原创 FRUC
看了一篇关于FRUC的论文总结了一个ppt,但是不知道怎么添加附件,所以,截图展示了:(⊙o⊙)…,,总结的粗糙,,没看过论文的可能看不懂。。。。。。...
2018-10-24 09:58:04 734 1
原创 HM16.9代码阅读-帧内预测()
这篇博客讲HM代码中xPredIntraPlanar、xPredIntraAng、xDCPredFiltering三个函数,有关帧内预测的理论知识看 https://blog.csdn.net/shayashi/article/details/82877875 。xPredIntraPlanar函数是对Planar模式预测的函数,Planar模式对应0,该模式的预测采用同双线性差值方式,代码如下...
2018-10-15 11:08:08 1202 1
原创 HM16.9代码阅读-帧内预测
先推荐几篇帧内预测的文章:https://blog.csdn.net/shaqoneal/article/details/44856469https://blog.csdn.net/nb_vol_1/article/details/51144828https://blog.csdn.net/cpp12341234/article/details/46043615和HEVC_CJL大神的帧内...
2018-10-13 11:47:10 1591 2
原创 HEVC打印ZScan扫描顺序
ZScan扫描是Z字扫描,从左上角开始扫描完一块扫描另一块。HM代码中ZScan扫描顺序存储在g_auiRasterToZscan数组中,该数组是Raster扫描到ZScan扫描的转换。类似的ZScan扫描到Raster扫描的数组为g_auiZscanToRaster。#include &amp;amp;lt;fstream&amp;amp;gt;... std::ofstream zscan; zscan.open...
2018-10-12 09:40:45 1053
原创 HEVC 帧内预测
帧内预测使用TU块。利用当前图片已经编码的像素进行预测。预测模式帧内预测可用块大小为帧内预测分成35种预测模式,其中33种角度预测(2-34),Planar预测(0)和DC预测(1)。支持块大小从4x4到64x64。MPM选择亮度预测当进行亮度预测时,选出三个MPMs。前两个MPMs是当前编码块的左边和上方的预测模式,但是当左边和上边的预测模式不可用时,就使用Intra_DC模式替代。...
2018-09-28 10:49:56 2913 1
原创 HEVC区域划分Slice Tile CTU CU PU TU
SliceSlice是可以不依赖同一张图片其他Slice独立编码的数据结构,包括信号预测、残差信号重建和熵编码。一张图片可以分为一个活多个Slice。Slice包含一个或多个Slice segment。Slice可以不是长方形。如图上图包含两个独立的Slice。第一个Slice包含三个Slice segments;第二个Slice包含一个Slice segment。Tile一张图片可以...
2018-09-27 20:52:45 1794
原创 HEVC名词解释
标注一下HEVC(High Efficiency Video Coding)中出现的英文单词缩写。PSNR:Peak signal to Noise Ratio峰值信噪比ME:montion estimation运动估计MV:motion vector运动向量MC:motion compensation运动补偿CTU:Coding tree unit编码树单元CTB:Coding tr...
2018-09-24 11:47:07 995
原创 H.264名词解释
总结H.264中名词和英语缩写的意思。VCL:Video Coding Layer视频编码层NAL:Network Abstraction Layer网络提取层CAVLC:context-adaptive variable-length coding基于上下文的自适应变长编码CABAC:context-adaptive binary arithmetic coding基于上下文的算术编码...
2018-09-21 21:41:24 354
原创 信息论基础知识
信息论基础知识自信息信息熵条件自信息和条件熵互信息联合熵信息率与信道容量自信息自信息衡量的是信源符号本身的不确定性。信源符号发生的概率越大,自信息越小;反之,自信息越大。若信源符号sis_{i}si发生的概率为pip_{i}pi,则sis_{i}si的自信息记为I(si)I(s_{i})I(si)。公式为:I(si)=log1pi=−logpiI(s_{i})=log\frac{1}...
2018-09-19 15:23:39 1308
原创 CSDN上编辑数学公式
之前不会在CSDN上编辑数学公式,百度了下,他们说是在online上编辑数学公式,然后下载下来,插入图片即可。例如: 但是这种点击“Click to Download Image”保存图片再上传会有问题是表达式或符号和汉字不对齐。 例如我在这一行插入了一个符号:,效果会很乱。 我前几篇文章都是这样编辑的,会显得界面很乱,但是我看别人的博客没有这个问题,研究发现,不下载导入图片,而是直接复...
2018-09-15 15:31:54 328
原创 Bayesian Statistics贝叶斯估计
贝叶斯估计使用概率作为信息的确信程度,认为数据集是直接可以观测的,所以不是随机的。而真实的参数是不确定的所以被表示成随机变量。 在观测数据之前,使用先验概率分布表示的信息。先验概率的选择是很宽泛的。 使用贝叶斯公式计算样本对参数的影响: 先验概率一般选择高斯分布或均匀分布都拥有很高的熵,通过观测的数据降低熵,并且集中选择参数最可能的值。且贝叶斯估计是基于的全分布来估计。例如观测过m个样本...
2018-09-13 17:28:15 3273
原创 极大似然估计Maximum Likelihood Estimation
极大似然估计是概率论在统计学的应用,是一种参数估计。说的是已知随机样本满足某种具体参数未知的概率分布,参数估计就是通过若干次试验,利用结果推出参数的大概值。极大似然估计的一种直观想法是已知某个事件发生了,我们应该估计使该事件发生的概率最大。例如甲箱有99个白球1个黑球,乙箱有1个白球99个黑球,随机选出一个箱子再从箱子中随机选出一个球是白球,那么我们假设该白球是从甲箱中取出的,因为甲箱取出白球的概...
2018-09-13 11:24:20 4568
原创 Bias 和 Variance的计算
Bias(偏差)描述的是预期值偏离真实值的大小,所以high bias代表Underfitting(欠拟合)。 Variance(方差)描述的是任何特殊采样数据可能造成的与预期值的偏离,所以high variance 代表Overfitting(过拟合)。 下面介绍Bias和Variance的计算。Bias估计量的bias定义为: 如果,则说估计量是无偏差的。Bernou...
2018-09-12 11:41:12 18884 1
原创 随机变量X
总结一下在概率论和应用随机过程中随机变量的定义。1.概率论把试验中所观察的对象用X表示,X具有这样的特点:随着试验的重复X可以取不同值,并且在每次试验中X取什么值不能提前知道,是带有随机性,若满足称X是随机变量。 随机变量的公理化定义是: 设是定义在样本空间上的函数,若对任意一个实数x,有中的子集 那么称是概率空间上的随机变量。2.随机过程是一个随机过程,在t固定...
2018-09-11 15:20:18 8952
原创 Machine Learning Basics
Deep Learning的第五章Machine Learning Basics总结。这一章主要讲机器学习的基本概念和组成。1.学习算法机器学习算法是指能够从数据中学习的算法。Mitchell给出的机器可以学习简明定义为:对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么我们称这个计算机程序在从经验E中学习。英文原版为: 下面简单介绍经验...
2018-09-10 16:20:15 456
原创 KKT approach和generalized Lagrangian function
KKT(Karush-Kuhn-Tucker) approach提供一种一般方法来实现带约束的优化。使用KKT approach我们引入generalized Lagrabgian function(广义拉格朗日函数)。 广义拉格朗日函数定义为: 。 其中和被称为KKT multipliers(KKT乘子),定义集合S来表示和,记为:。被称为equality constraints(等式约束...
2018-09-08 15:22:19 490
原创 Numerical Computation
总结Deep Learning第四章Numerical Computation知识点。 1.Overflow and Underflow 书中指出在数字计算机系统中最大的连续计算问题是用有限的位运算表示无限多个实数。对于一些实数,当我们在计算机中表示时会出现近似错误,最常见的就是舍入错误。例如将近似0的数舍入成0,这就是Underflow。而当舍入的0出现在分母时,就会出现大的计算错误问题。而...
2018-09-08 14:36:32 1075
原创 常见概率分布的特征函数推导
特征函数定义是:设X是实值随机变量,则对任意实数t,有 称为随机变量X的特征函数,其中。一、离散概率分布1.单点分布 单点分布的分布列为。 其特征函数计算方法如下: 2.二项分布 二项分布的分布列为。 其特征函数的计算方法如下: 3.泊松分布 泊松分布的分布列为。 其特征函数的计算方法如下: 4.几何分布 几何分布的分布列为。 特征函数的计算方法如下:...
2018-09-07 17:24:24 121582 15
原创 Probability and Information Theory
读完Deep Learning的第三章Probability and Information Theory,总结一下这章的知识点。 第三章讲概率论和信息论的基础知识。1. 随机变量Random Variables在书中知识简单说随机变量是可以随机取不同值的变量,而没有给出确切定义。随机变量可以使分散的(discrete)或连续的(continuous)。(最近在学应用随机过程,其中有...
2018-09-06 17:20:28 458
原创 YUV介绍
YUV表示的含义 人们常用RGB表示三基色,而且RGB也可以表示出所有颜色。但视觉心理学研究表明,人眼主要是对光的感知,人的视觉系统对光的感知程度用亮度(luminance)和色度(chrominance)两个属性表示,也就是我们常说的YUV。Y就是亮度感知,而色度感知分为两个属性:色相(hue)和色饱和度(saturation)。色相也就是U,是由光波的峰值定义的,描述的是光的颜色;色饱和度V...
2018-09-05 09:40:45 8762
原创 Principal Component Analysis主成分分析原理
Principal Component Analysis(PCA)假设我们有属于的m个点的集合,若想将这些点实现有损压缩,则可以将这些点映射到低维度,这样存储这些点可以占用更少的内存。例如将其压缩成,l小于n。所以我们想找到一个压缩方法f(x)使得f(x)=c,并且找到一个解压缩方法使得。 为了使算法简单,我们使用矩阵乘法来实现,令,其中矩阵D是标准正交基。 为求最优解,推导公式如下图所示...
2018-09-03 21:13:35 476
原创 Linear Algebra 线性代数
Linear Algebra 线性代数最近在看Deep Learning这本书,刚看了Linear Algebra章,总结一下。名词函数 Scalars:标量,就是单个数,一般用小写倾斜字体表示。 Vectors:向量,一般用小写加粗字体表示。 Matrices:二维矩阵,一般用大写加粗字体表示。 Tensors:多维矩阵。矩阵的基本运算 transpose:转置,使...
2018-09-02 17:03:23 1076
原创 神经网络基础知识总结
神经网络基础知识总结前馈神经网络 前馈神经网络描述的是网络的结构,是指每一层的神经元只接受前一层神经元的输入,并且输出到下一层。BP神经网络 BP神经网络在百度百科上的解释是一种按照误差逆向传播算法训练的多层前馈神经网络。BP即Back Propagation,就是常用的反向传播算法。MLP MLP是多层感知机也成为多层神经网络,是一种前向结构,包括输入层、隐藏层和输出层。至少三...
2018-09-02 10:40:01 7817 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人