栈(Stack)
栈是先进后出(Last In Fast Out)的线性表,限定仅在表尾进行插入和删除操作的线性表,把允许插入删除的一端称为栈顶
栈示意图
进栈出栈变化形式
最先进栈的元素不一定最后出栈,因为栈对线性表的插入和删除的位置进行了限制,并没有对元素进出的时间进行限制,也就是说,在不是所有元素都进栈的情况下,事先进去的元素也可以出栈,只要保证是栈顶元素出栈就行
例如整型数字元素1,2,3依次进栈,出栈顺序可为:
- 第一种,1,2,3进,再3,2,1出,出栈次序321
- 第二种,1进,1出,2进,2出,3进,3出,出栈次序123
- 第三种,1进,2进,2出,1出,3进,3出,出栈次序213
- 第四种,1进,1出,2进,3进,3出,2出,出栈次序132
- 第五种,1进,2进,2出,3进,3出,1出,出栈次序231
3个元素会有5种出栈次序
栈的顺序存储结构
栈是线性表的特例,栈的顺序存储结构其实是线性表顺序存储的简化,称为顺序栈,顺序栈结构体如下:
typedef int ElemType; /* ElemType类型根据实际情况而定,这里假设为int */
typedef struct Stack
{
Elemtype *elem;
int top; /* 用于栈顶指针 */
int stacksize; /* 栈的空间大小 */
}SqStack;
顺序栈的初始化
- 开辟初始空间
- 初始化top
- 初始化stacksize
void InitStack(PStack st)
{
assert(st != NULL); //确保st不为空指针
st->elem = (ElemType*)malloc(sizeof(ElemType)*STACK_INIT_SIZE);
st->stacksize = STACK_INIT_SIZE;
st->top = -1;
}
顺序栈的扩容
- 开辟空间
- 更新stacksize
static void AppendStack(PStack st)//扩容
{
assert(st != NULL);
st->elem = (ElemType*)realloc(st->elem, st->stacksize + sizeof(ElemType)*STACKINCREMENT);
st->stacksize += STACKINCREMENT;
}
顺序栈的进栈(Push)
对于进栈操作push,其实做了三件事情
- 判断栈满
- 栈顶指针加一
- 将新插入元素赋值给栈顶空间
void Push(PStack st, ElemType val)
{
assert(st != NULL);
if (st->top == st->stacksize) //判断栈满
{
AppendStack(st);
}
st->top++; //栈顶指针加一
st->elem[st->top] = val; //将新插入元素赋值给栈顶空间
}
顺序栈的出栈(Pop)
若栈不为空,则弹出栈顶元素给e,栈顶指针减一
int Pop(PStack st, ElemType *e) // 若栈不为空,则弹出栈顶元素给e,栈顶指针减一
{
assert(st != NULL);
if (st->top >= 0)
{
*e = st->elem[st->top];
st->top--;
return 1;
}
return 0;
}
顺序栈的销毁
void Destory(PStack st)
{
assert(st != NULL);
free(st->elem);
st->elem = NULL;
st->stacksize = 0;
}
顺序栈的清空
void Clear(PStack st)
{
assert(st != NULL);
st->top = 0;
}
顺序栈判空
bool IsEmpty(PStack st)
{
assert(st != NULL);
return st->top == -1;
}
获取顺序栈栈顶元素
ElemType GetTop(PStack st)
{
assert(st != NULL);
return st->elem[st->top];
}
栈的链式存储结构
栈的链式存储结构是用链表方式来实现栈,简称链栈,
链栈把栈顶放在单链表的头部,如下图所示:
链栈结构体如下:
typedef struct StackNode // 栈结点
{
ElemType data;
struct StackNode *next;
}StackNode,*LinkStackPtr;
typedef struct LinkStack // 链栈
{
LinkStackPtr top;
int count;
}LinkStack;
链栈的操作绝大部分都和单链表类似,只是在插入和删除上,特殊一些
链栈的进栈(Push)
假设要进栈的是元素值为e的新节点s,top为栈顶指针,则进栈示意图如下:
- 将当前的栈顶元素赋值给新节点的直接后继
- 更新栈顶指针,使其指向新元素
Status Push(LinkStack *LS, ElemType e)
{
LinkStackPtr s = (LinkStackPtr)malloc(sizeof(StacNode));
s->data = e;
s->next = LS->top; //将当前的栈顶元素赋值给新节点的直接后继
LS->top = s; //更新栈顶指针,使其指向新元素
LS->count++;
return OK;
}
链栈的出栈(Pop)
假设变量p用来存储要删除的栈顶结点
- 将栈顶结点赋值给p,如下图步骤1
- 栈顶指针下移一位,如下图步骤2
- 释放结点p
//若栈不为空,则删除栈顶元素,用e返回其值,并返回OK;否则返回ERROR
Status Pop(LinkStack *S, ElemType *e)
{
LinkStackPtr p;
if(StackEmpty(*S))
{
return ERROR;
}
*e = S->top->next;
p = S->top; //将栈顶结点赋值给p,如上图步骤1
S->top = S->top->next; //栈顶指针下移一位,如上图步骤2
free(p); //释放结点p
S->count--;
return OK;
}
顺序栈与链栈对比
顺序栈与链栈的进栈出栈时间复杂度均为O(1)。对于空间性能,顺序栈需要事先确定一个固定的长度,可能会存在内存空间浪费的问题,但它的优势是存取定位很方便,而链栈则要求每个元素都有指针域,这同时也增加了一些内存开销,但对于栈的长度可以灵活开辟。所以他们的区别如同顺序表与链表的区别。
如果栈的使用过程中元素的变化不可预料,有时很小,有时很大,那么最好用链栈;反之,如果它的变化在可控范围内,则可使用顺序栈