通义千问部署搭建


部署参考视频

通义千问-7B-预训练-模型库

一、部署1

1.1 打开通义千问-7B-预训练-模型库-选择资源

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.2 使用Netbook

在这里插入图片描述
弹出新页面
在这里插入图片描述

2.1 运行

在这里插入图片描述

2.2 复制脚本

from modelscope import AutoModelForCausalLM, AutoTokenizer
from modelscope import GenerationConfig
import datetime
print("启动时间:" + str(datetime.datetime.now()))
tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen-7B-Chat", revision = 'v1.0.5',trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-7B-Chat", revision = 'v1.0.5',device_map="auto",offload_folder="offload_folder", trust_remote_code=True,fp16 = True).eval()
model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat",revision = 'v1.0.5', trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
model.float()

print("开始执行:" + str(datetime.datetime.now()))
response, history = model.chat(tokenizer, "你好", history=None)
print(response)
print("第一个问题处理完毕:" + str(datetime.datetime.now()))
response, history = model.chat(tokenizer, "浙江的省会在哪里?", history=history) 
print(response)
print("第二个问题处理完毕:" + str(datetime.datetime.now()))
response, history = model.chat(tokenizer, "它有什么好玩的景点", history=history)
print(response)
print("第三个问题处理完毕:" + str(datetime.datetime.now()))

在这里插入图片描述
在这里插入图片描述

2.2.1 问题1 :ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run pip install transformers_stream_generator

在这里插入图片描述

解决方法
pip install transformers_stream_generator
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这就好了,重新运行下
在这里插入图片描述
ValueError: The current device_map had weights offloaded to the disk. Please provide an offload_folder for them. Alternatively, make sure you have safetensors installed if the model you are using offers the weights in this format.

参照这哥们的
https://zhuanlan.zhihu.com/p/649272911

在这里插入图片描述

2.3 查看结果

3.其他作者的demo

3.1 克隆代码

git clone https://gitee.com/JokerBao/Qwen-7B-FastWeb.git

在这里插入图片描述

3.2 加载依赖

pip install -r requirements.txt

在这里插入图片描述

3.3 运行代码

python Qwen_demo.py

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、部署2

1.1 启动服务器

在这里插入图片描述

1.2 使用官方提供的demo

拉代码

git clone https://github.com/QwenLM/Qwen-7B.git

在这里插入图片描述

1.2 为了拉去大模型,更新LFS

apt-get update

在这里插入图片描述
在这里插入图片描述

apt-get install git-lfs

在这里插入图片描述

2.1 拉千问模型文件

git clone https://www.modelscope.cn/qwen/Qwen-7B-Chat.git

初始化一下

git init
git lfs install

在这里插入图片描述

2.1.1模型下载成功

在这里插入图片描述

2.1.2 安装依赖

为了方便我把模型移动到一开始的文件夹里面
在这里插入图片描述

pip install -r requirements.txt

在这里插入图片描述
也可以使用web依赖

pip install -r requirements_web_demo.txt

3.1 修改web.demo.py地址

在这里插入图片描述
然后ctrl+s 保存

4 运行

 python web_demo.py 

5 成功

在这里插入图片描述

5开启量化

在这里插入图片描述

pip install bitsandbytes

在这里插入图片描述

添加依赖

from transformers import BitsAndBytesConfig
import torch

在这里插入图片描述
添加

quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type='nf4',
            bnb_4bit_compute_dtype=torch.bfloat16)

在这里插入图片描述
在这里插入图片描述

### 部署通义的重排序模型至 Dify 平台 #### 准备工作 为了成功部署通义的重排序模型到 Dify 平台,需先完成环境搭建。这涉及获取并安装必要的工具和依赖项。 确保已安装 Git 和 Docker 环境,因为后续操作会频繁使用这两个工具来拉取代码仓库以及容器化应用服务[^3]。 #### 获取 Dify 项目源码 通过执行如下命令克隆指定版本 (v0.6.9) 的 Dify 应用程序: ```bash git clone https://github.com/langgenius/dify.git -b v0.6.9 --single-branch cd dify ``` 此步骤提供了稳定的基础架构用于集成第三方组件,如通义的重排序模块。 #### 整合通义 Rerank 模型 考虑到 Ollama 提供了简化大型语言模型部署的能力及其预构建模型库特性[^1],可以利用该框架的优势快速实现通义 rerank 模型的服务化封装。具体做法包括但不限于: - **引入外部模型**:如果通义官方未直接提供兼容接口,则可能需要手动下载对应权重文件,并按照 Ollama 所支持的标准格式转换后加载。 - **定制 API 接口**:基于业务需求设计 RESTful 或 gRPC 类型的数据交换协议,以便前端调用者能顺利发送待处理请求给后台推理引擎;同时也要考虑安全性方面的要求,比如身份验证机制等。 - **优化性能表现**:鉴于实际应用场景中对于响应速度有着较高期待,在不影响精度的前提下尽可能减少计算开销成为关键考量因素之一。可以通过调整批大小(batch size),启用混合精度训练(mixed precision training)等方式达成目标。 #### 启动与测试 当上述准备工作完成后,即可依据官方文档指引启动整个系统栈,并借助 Postman 或 curl 工具发起简单查询以检验整体流程是否顺畅无阻。 假设一切正常运作的话,现在应该可以在本地环境中看到由通义驱动的结果输出了!
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码浪人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值