用户画像以及推荐系统
文章平均质量分 66
huipingx
这个作者很懒,什么都没留下…
展开
-
用户画像以及推荐系统
一.用户画像 1.什么是用户画像 根据用户目标,行为, 观点的差异,抽出典型特征进行区别,即打标签2.建立用户画像作用 例如:啤酒与尿布的故事 推荐系统 猜你喜欢 精准营销 锁定用户 广告投放3.建立用户画像的数据 数据:静态和动态数据 静态:性别 地域 职业 消费等级 动态:浏览网页 搜索商品 发表评论4.一般步骤 数据预处理 特征选择 建模预测 待补充代码 二.推荐系统 1.协同过滤 (1...原创 2018-12-18 22:40:28 · 5427 阅读 · 0 评论 -
关联规则
关联规则挖掘的 3 个度量指标:支持度、置信度、提升度 支持度(Support) X → Y 的支持度表示项集 {X,Y} 在总项集中出现的概率 其中,I 表示总事务集,num()表示事务集中特定项集出现的次数,P(X)=num(X)/num(I) 置信度(Confidence) X → Y 的置信度表示在先决条件 X 发生的情况下,由规则 X → Y 推出 Y 的概率。 提升度(Lift) X ...原创 2018-12-18 23:08:15 · 2850 阅读 · 0 评论