机器学习评价指标(ACC,P,R,F1,AUC等)

分类
TP:正例预测正确的个数
FP:负例预测错误的个数
TN:负例预测正确的个数
FN:正例预测错误的个数

准确率(accuracy)
在这里插入图片描述
精确率(precision) 描述的是在所有预测出来的正例中有多少是真的正例
在这里插入图片描述
准确率与精确率的区别:
在正负样本不平衡的情况下,准确率这个评价指标有很大的缺陷。比如在互联网广告里面,点击的数量是很少的,一般只有千分之几,如果用acc,即使全部预测成负类(不点击)acc 也有 99% 以上,没有意义。

召回率(recall) ,描述的是所有正例我能发现多少
在这里插入图片描述
F1值——精确率和召回率的调和均值
在这里插入图片描述
只有当精确率和召回率都很高时,F1值才会高

ROC曲线与AUC值<

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值