分类
TP:正例预测正确的个数
FP:负例预测错误的个数
TN:负例预测正确的个数
FN:正例预测错误的个数
准确率(accuracy)
精确率(precision) 描述的是在所有预测出来的正例中有多少是真的正例
准确率与精确率的区别:
在正负样本不平衡的情况下,准确率这个评价指标有很大的缺陷。比如在互联网广告里面,点击的数量是很少的,一般只有千分之几,如果用acc,即使全部预测成负类(不点击)acc 也有 99% 以上,没有意义。
召回率(recall) ,描述的是所有正例我能发现多少
F1值——精确率和召回率的调和均值
只有当精确率和召回率都很高时,F1值才会高
ROC曲线与AUC值<