目录
摘要
抗生素耐药性已经成为近年来对人类健康的最严重威胁之一。面对当前抗生素日益增长的微生物耐药性,开发新的抗生素或探索应对耐药性的新方法显得尤为重要。抗菌肽(AMPs)在这方面显示出极大的潜力,因为微生物对其产生的耐药性较低或几乎没有。然而,抗菌肽的发现和开发仍然面临诸多障碍,如目标的确定、实验的开发以及关键分子和先导化合物的识别,这些过程耗时较长,难以迅速推向市场。然而,随着基因组挖掘的出现,使用BAGEL、antiSMASH、RODEO等工具可以高效地发现新抗生素,为未来疾病治疗带来了希望。在基因组挖掘中,计算方法自动检测和注释基因组数据中的生物合成基因簇,使其成为天然产物发现中的有力工具。本文旨在阐明抗菌肽的历史、种类和作用机制,并汇总了通过传统方法和基因组挖掘策略识别的新型抗菌肽数据。此外,本文还对部分抗菌肽在不同阶段的临床试验情况进行补充说明,并概述了专为抗菌肽发现而构建的基因组挖掘数据库和工具。鉴于最近的技术进展,可以清楚地看出靶向基因组挖掘作为希望的灯塔,在加速新型抗菌剂的发现方面具有巨大潜力。
1. 抗菌肽的历史背景
抗菌肽(AMPs)是由五个到上百个氨基酸组成的小寡肽,在宿主的先天免疫中发挥关键作用,对抗多种致病微生物,包括细菌、真菌、寄生虫和病毒。过去,描述抗菌肽的术语有多种,例如阳离子宿主防御肽(HDPs)、阳离子两亲肽、阴离子抗菌肽/蛋白、阳离子抗菌肽以及α-螺旋抗菌肽。天然抗菌肽存在于原核生物(例如细菌)和真核生物(例如昆虫、植物、真菌和动物)中,被认为是对抗致病微生物的第一道防线。因此,抗菌肽在预防大多数感染中扮演了至关重要的角色。
1939年,Dubos首次报道了抗菌肽,从一种土壤细菌——芽孢杆菌中获得的抗菌成分在体内和体外均对小鼠的肺炎链球菌感染有抑制作用。该抗菌肽被称为革兰酰肽,在伤口和溃疡愈合方面展现出治疗潜力,使其成为首个被商业化合成的抗生素。随后,在1941年,从短小芽孢杆菌中提取的酪链菌肽和从小麦中提取的噬菌素也相继被发现,它们对革兰氏阴性和阳性细菌及真菌均表现出有效的抗菌作用。
来自动物的抗菌肽也陆续被发现,1960年代从青蛙中提取的溴苯素和从牛奶中提取的乳铁蛋白为其中代表。1981年,Hans Boman团队的一项开创性研究表明,在家蚕幼虫(塞戈龙蛾)中注入细菌可以诱导一种强效抗菌肽的产生,最终发现了塞曲平肽,这是第一个报道的主要α-螺旋抗菌肽。另一个重要事件是从非洲爪蟾(非洲爪蟾)中分离出一种阳离子抗菌肽,被称为蛙皮素。截至目前,抗菌肽数据库DRAMP(抗菌肽数据存储库)已记录了来自六个不同生物界的3791种抗菌肽,其中包括826种来自植物、431种来自细菌、7种来自原生生物、6种来自真菌、4种来自古细菌以及2519种来自动物。
2. 抗菌肽的分类
迄今为止,已发现超过5000种肽序列,这使得对抗菌肽进行分类成为必要。抗菌肽的分类方式多种多样,主要依据其结构和生物合成途径;此外,还可以依据生物学功能、分子靶标、物理化学性质以及作用机制(MOA)等进行进一步分类。基于二级结构特征,抗菌肽可分为三大类:α-螺旋结构、β-折叠结构和扩展环肽。前两类是最常见的抗菌肽。根据抗菌肽数据库(APD)的数据,大约14%的抗菌肽为α-螺旋结构,2.6%为β-折叠结构,3.4%为混合结构,3.3%富含不常见氨基酸,15.3%具有二硫键结构,其余60.6%的结构尚不明确。根据生物合成途径,抗菌肽可分为核糖体合成并经翻译后修饰的肽(RiPPs)和非核糖体肽(NRPs)。RiPPs由核糖体合成并经翻译后修饰的肽合成酶(RiPP合成酶)生成,而NRPs则由非核糖体肽合成酶(NRP合成酶)生成。
2.1. 基于结构的抗菌肽
2.1.1. α 螺旋肽
抗菌肽的第一类包括具有α-螺旋结构的肽,大多数在水溶液中是无结构的,而当暴露于三氟乙醇、十二烷基硫酸钠(SDS)等洗涤剂、胶束以及超过临界胶束浓度的脂质体时则会形成有序结构。LL-37是猫皮素家族(最具多样性的抗菌肽家族之一)中的一员,是一种广为研究的具有α-螺旋结构的人类抗菌肽。猫皮素抗菌肽的氨基酸数目在12到80之间,可以形成多种结构。LL-37不仅在抗菌活性上发挥作用,还在免疫调节和炎症反应中起着重要作用。
另一个例子是蛙皮素(magainins),这是一组由23个氨基酸残基组成的已知结构的抗菌肽,最早从非洲爪蟾中分离。蛙皮素的结构-功能关系已被广泛研究。核磁共振(NMR)研究表明,蛙皮素在25%三氟乙醇中形成两亲性α-螺旋结构。此外,从塞戈龙蛾中提取的塞曲平肽-A在15%六氟异丙醇中也表现出α-螺旋结构。
来自黄金雨蛙(Litoria aurea)和淡腹雨蛙(L. raniformis)的金肽(aurein peptides)也是具有α-螺旋结构的抗菌肽。大约30种金肽已被识别并分为五个家族(金肽1-5)。如表皮葡萄球菌和金黄色葡萄球菌等革兰氏阳性细菌对大多数金肽敏感。值得注意的是,除了其抗菌潜力外,金肽1.2、3.2和3.3在对白血病、肺癌、结肠癌、中枢神经系统癌、黑色素瘤、卵巢癌、肾癌、前列腺癌和乳腺癌等多种癌症类型的研究中也表现出良好的疗效。
已经发现了多个肽,它们在与靶膜结合时表现出增强的α-螺旋结构。尽管这种螺旋结构在溶液中对许多这些肽来说也是常见的,特定的螺旋长度、带电和疏水残基的排列和取向以及其他因素可以解释这一类肽所表现出的多样化活性。这类肽的多样化活性可归因于这些因素产生的多种螺旋结构。
2.1.2. β-折叠肽
抗菌肽的第二类是β-折叠结构肽,包括防御素、前列环素和马蹄蟹素。几乎所有具有β-折叠结构的抗菌肽都含有保守的半胱氨酸残基,这些残基通过形成二硫键来赋予其结构稳定性,在从水相环境迁移到膜环境时能够保持稳定,并且防止其被蛋白酶介导的分解。
防御素是最大且最常见的抗菌肽种类,根据二硫键的位置分为多个亚家族,例如人防御素5。据报道,防御素具有抗菌、抗病毒、抗真菌、免疫调节和抗炎功能。相比之下,前列环素对多种微生物具有强效的细胞毒性活性,并在先天免疫系统中发挥重要作用。其他β-折叠抗菌肽,如马蹄蟹素和蓝血素,则表现出细胞毒性和抗菌潜力。
2.1.3 扩展环肽(Extended coil peptides)
抗菌肽的第三类缺乏典型的二级结构,而是具有独特的扩展环结构,通常富含精氨酸、脯氨酸和/或组氨酸残基。该类别中的大多数抗菌肽为猫皮素,它们含有两个或更多的脯氨酸残基,这些残基会破坏α-螺旋或β-折叠的二级结构,从而形成延展的结构。例如,吲哚菌素(见图1c)由牛白细胞产生,仅由13个氨基酸组成,并在胶束存在的情况下形成独特的“膜结合肽结构”。
2.2. 基于生物合成途径的抗菌肽
2.2.1. 核糖体合成和翻译后修饰肽
核糖体合成和翻译后修饰肽(Ribosomally synthesised and post-translationally modified peptide, RiPP)的生物合成基因簇(Biosynthetic Gene Cluster, BGC)通常包含一个编码前体肽的结构基因和多个编码修饰酶的基因,这些修饰酶参与将前体肽转化为成熟肽。尽管RiPPs在基因组中编码,但由于这些基因通常较短且具有多个独特的翻译后修饰(Post Translational Modifications, PTMs),因此对其进行基因注释具有挑战性。基于结构和生物合成的共同特性,RiPPs可被划分为近40类(例如兰他菌素、噻肽、套索肽等)。乳链菌肽、杜拉霉素、乳酸素、植物唑菌素、三甲酰胺、硫霉素A、微菌素J25、海洋抑菌肽等是RiPPs的部分实例。
通常,一个核糖体合成的前体肽由N端引导肽、C端核心肽和偶尔的C端跟随肽(如瓶霉素)组成。在核糖体肽的生物合成过程中,氨酰tRNA合成酶催化ATP依赖的氨基酸活化,形成氨酰腺苷酸,随后被转移到对应的tRNA上,从而生成氨酰tRNA以用于核糖体肽合成。核糖体翻译完成后,前体肽会经历广泛的PTMs,N端引导肽和C端跟随肽作为修饰酶的识别序列,并在修饰过程中引导PTM酶按正确顺序完成修饰。一旦核心肽完全修饰后,它会通过蛋白水解从引导和/或跟随肽中释放。
测序技术的发展产生了大量的基因组数据,从而催生了先进的生物信息学管道。这一尖端技术在RiPPs的发现中发挥了关键作用。例如,RiPP特异性生物信息学工具如BAGEL、RODEO、RiPPER、antiSMASH、ClusterFinder、RiPP-PRISM、DeepRiPP等已经使RiPPs的发现变得更加高效。这些工具可以通过机器学习以类特异性的方式找到现有类别的新实例,或以无类别限制的方式发现全新的RiPP家族。
例如,Burkholderia基因组序列中利用antiSMASH 6.0细菌版本识别出RiPP BGCs。在另一项研究中,通过RiPP-PRISM识别了橙环菌素,来源于金黄链霉菌。此外,利用BAGEL4分析了拟杆菌目细菌的RiPP生物合成潜力,发现了1340个RiPP BGCs。另一项研究中使用RiPPER工具预测了11个新型P450修饰的多环RiPPs,具有不同的环烷烃连接器。此外,使用RODEO以无类别限制的方式发现了新的RiPP类daptides。
与RiPPs不同,不经过广泛翻译后修饰的AMPs被称为经典抗菌肽,尽管它们可能具有简单的修饰,如二硫键的形成。经典AMPs包括防御素、猫皮素、丝心蛋白素等,可从微生物、植物和动物等不同来源中获得。经典AMPs的氨基酸序列决定了它们的特性,可分为四组:
(a) 富含天冬氨酸和/或谷氨酸残基的阴离子肽,如maximin H5;
(b) 富含赖氨酸、精氨酸和/或组氨酸的线性阳离子α-螺旋肽,如蜜蜂毒素;
(c) 富含特定氨基酸(如脯氨酸、精氨酸、苯丙氨酸等)的阳离子肽,如蜜蜂毒素;
(d) 含有形成二硫键的半胱氨酸残基的阴离子和阳离子肽,如果蝇素、人防御素和马蹄蟹素。
2.2.2. 非核糖体肽
非核糖体肽(Non-ribosomal peptides, NRPs)广泛分布于自然界中,是生物医学领域的重要天然产物。它们不直接由基因组编码,而是通过非核糖体肽合成酶(Nonribosomal Peptide Synthetase, NRPS)利用非核糖体编码合成。不同于核糖体肽合成,NRPS在没有mRNA的情况下工作,通过一系列组织成模块的催化结构域来合成肽。NRPs包含超过20种已上市药物,如万古霉素(抗菌)、博来霉素(抗癌)和环孢素(免疫抑制剂)。NRPS是类似装配线的大型酶,由多个模块组成,每个模块负责将一个氨基酸加入新生的寡肽链中,以形成NRPs。
NRPs的生物合成是方向性的,所得寡肽的主序列由各模块选择并加入的氨基酸组成。每个模块包含几个关键结构域,例如:腺苷化(A)结构域用于氨基酸的选择和活化,肽载体蛋白(PCP)用于锚定活化的氨基酸,而缩合(C)结构域催化肽键的形成。这些结构域驱动了NRPs的结构多样性,因为它们可以选择性地激活一系列非蛋白源性氨基酸(如鸟氨酸、脲基丙氨酸、犬尿氨酸等),这些氨基酸通常经过羟基化、甲基化或卤化修饰。
PCP属于载体蛋白家族,是NRPS的运输单元,负责将活化的氨基酸和生长中的肽链转移到模块编码结构域的催化中心。当两个相邻模块的PCP载满时,C结构域催化形成一个肽键,使寡肽链延长一个构件,并将其转移到C端PCP,重复下一个模块的延伸过程。
对NRPS衍生肽生物合成的深入研究促进了高度复杂的生物信息学数据库和工具的发展,利用基因组挖掘方法识别和注释基因组中的NRPS。尽管BLAST广泛应用于基因组挖掘和NRPS的发现,仍然开发了特定的数据库和工具,如ClusterMine360、NRPquest、antiSMASH、NaPDoS(Natural Product Domain Seeker)、NORINE、NP.searcher、NRPminer等。例如,利用antiSMASH检测纤维素降解芽孢菌基因组发现2个NRP基因簇,而NP.searcher检测到1个NRP基因簇,NaPDoS定位了来自NRP基因簇的20个C结构域。类似地,齿龈诺氏菌的基因组挖掘揭示了6个NRPS基因簇。在另一项研究中,使用NRPminer识别了180种独特的NRPs,其中包括4个未报道的新家族。
3. 来自植物、动物、真菌和细菌的抗菌肽
3.1 植物源抗菌肽
-
植物通过次生代谢物(如植物抗毒素、单宁、多酚化合物)和抗菌肽(AMPs)来抵抗微生物的攻击。这些抗菌肽通常富含半胱氨酸,有助于其化学和蛋白水解的稳定性。植物源AMPs通常分子量在2至10 kDa之间,且结构稳定、抗菌谱广。例如,普鲁塞素是从小麦中提取的抗菌肽,具有抑制革兰氏阴性和阳性菌的能力。另外,小麦籽粒内胚乳中也含有另一类抗菌肽普罗多胺,这种肽富含色氨酸,对一些革兰氏阳性菌和真菌具有抑制作用。
3.2 动物源抗菌肽
-
动物源AMPs中最具代表性的是防御素,包括α-防御素、β-防御素和θ-防御素。β-防御素(如hBD1-4)在多种免疫反应中起关键作用,能广谱抑制革兰氏阳性和阴性菌、病毒和真菌。研究表明,防御素在调节免疫和疾病病理中有着重要作用。例如,hBD2和hBD3在银屑病等炎症性皮肤病中被发现。
3.3 真菌源抗菌肽
-
真菌中发现了多种具有抗菌活性的AMPs,最著名的是富含半胱氨酸的防御素样AMPs。例如,从黑色假青霉中提取的普列克素(plectasin)是一种具有40个氨基酸的抗菌肽,能够结合细菌细胞壁前体脂质II,对耐甲氧西林金黄色葡萄球菌(MRSA)等具有显著抑制作用。另一种真菌抗菌肽酰胺胺(peptaibols),含有非蛋白氨基酸,具有广谱抗菌活性,例如由绿青霉分泌的阿拉米西丁。
3.4 细菌源抗菌肽
-
细菌素是细菌产生的抗菌肽(如乳酸菌产生的细菌素),被广泛用于食品和制药工业。细菌素可分为含有羊毛硫氨酸的羊毛硫生物素(I类)和非羊毛硫生物素(II类)。例如,由乳酸乳杆菌产生的乳链菌素(nisin),已用于食品保鲜超过60年,对金黄色葡萄球菌、大肠杆菌等病原菌具有广谱抑制作用。
4. 抗菌素耐药性的挑战
微生物感染在全球死亡率中占有重要地位。尽管几乎所有的细菌性疾病都可以通过抗生素治疗,抗菌素耐药性的出现却降低了抗生素的效果。所谓的“红色警报”细菌对大多数一线抗生素构成威胁,已与血流感染、呼吸道感染、泌尿道感染和手术部位感染的严重病例相关。例如,多重耐药(MDR)医院感染病原体鲍曼不动杆菌主要导致重症监护病房中的医院获得性感染。而金黄色葡萄球菌(S. aureus)占据了0.5-6%的泌尿道感染病例,但还可引发皮肤和软组织感染、败血症和菌血症。
其中,耐甲氧西林金黄色葡萄球菌(MRSA)是最危险、最常见的医院获得性感染之一,每年导致数千人死亡。尽管最初认为MRSA的危害较低,但近年其威胁显著增加。尽管大多数抗生素对葡萄球菌本质上有效,然而,葡萄球菌通过突变和DNA转移在细菌间传播耐药性,仍然是造成疾病和死亡的主要原因。1941年青霉素引入后,葡萄球菌感染似乎得到了控制,但在七年内,约50%的金黄色葡萄球菌感染病例表现出对青霉素的耐药性,原因在于青霉素酶的作用,该酶能够水解青霉素,从而破坏抗生素的疗效。为应对这种耐药性,研发了甲氧西林,但在甲氧西林上市后不久,金黄色葡萄球菌即出现了对其的耐药性,此时细菌通过改变细胞中的甲氧西林靶位点(青霉素结合蛋白),使甲氧西林无法结合并抑制细胞生长,因此被称为MRSA。MRSA感染的死亡率显著高于甲氧西林敏感的金黄色葡萄球菌感染。
当前,MRSA病例的数量在增加,令人担忧的是,金黄色葡萄球菌不仅对甲氧西林产生了耐药性,还对一系列其他抗生素具有耐药性,甚至包括最后的抗生素之一万古霉素。1990年代首次发现万古霉素耐药性感染,2002年又发现了两例万古霉素耐药金黄色葡萄球菌(VRSA)感染,至2010年发现第12例VRSA感染。
为应对抗生素耐药性问题,研究者们持续努力开发新的抗菌肽(AMPs)。目前约有40种AMPs处于临床开发/试验阶段,作为抗菌或免疫调节药物,自2000年以来已有20种新型抗生素被引入。然而,其中一些AMPs在临床试验中失败。
4.1. 细菌对抗菌肽产生耐药性的机制
AMP的作用机制(MOA)涉及攻击多个低亲和力靶标,而非单一的高亲和力靶标,这使得微生物难以产生对AMP的耐药性。然而,大量数据显示细菌可以通过多种机制产生对AMP的耐药性,主要包括以下四种机制:(1) 蛋白酶降解肽,(2) 通过细菌表面修饰改变靶点,(3) 形成胶囊以隔离细菌膜,(4) 免疫调节。
通过分析细菌耐药基因组,发现与细胞表面修饰和AMP降解相关的遗传指示物。细菌通过膜的刚度、厚度和电荷的理化变化来阻止AMP的附着。相比起那些以细胞内蛋白为靶点的AMP,具有膜透性功能的AMP更常被选择用于抗菌治疗。此外,合成化学途径使得研发不依赖遗传靶标亲和力的AMP成为可能。
抗生素通常仅有少量的大分子靶标,往往是关键的细菌蛋白,因此易于产生严重且日益增长的耐药性问题。相比之下,AMP的耐药性发展程度较低,因为AMP通常针对多个疏水性和/或聚阴离子性靶标。
5. 抗菌肽发现的计算方法
5.1 基因组挖掘用于抗菌肽的发现
基因组测序技术的进步让科学家能够对各种微生物进行基因组测序,从中发掘新的基因和代谢通路。基因组挖掘是当前广泛用于寻找新型抗菌肽(AMPs)的方法之一,主要通过分析微生物基因组中的基因簇来定位潜在的抗菌肽。研究人员采用高效液相色谱、质谱等分析工具,以及BAGEL、antiSMASH等基因组挖掘工具来预测和解释基因簇的结构和功能。
5.1.1 基因组挖掘的目标和策略
尽管许多微生物的基因组已经完成测序,但基因组挖掘过程主要集中在与新型抗菌化合物相关的基因簇。例如,放线菌由于其基因组较大且含有多种次生代谢产物,因此成为了基因组挖掘的重点对象。通过对放线菌基因组的挖掘,发现了如Streptomyces ambofaciens产生的stambomycins等抗生素。此外,真菌基因组也含有许多隐性基因簇,能够产生如聚酮合酶和非核糖体肽合成酶等次生代谢产物。
6. 基因组数据库和抗菌肽搜索工具
数据库
计算软件
6.1 BAGEL
BAGEL是最早用于检测和定位核糖体合成的抗菌肽(RiPP)和细菌素基因簇(BGCs)的工具之一。BAGEL通过基因组数据和各种抗菌肽的数据库来分析和标注可能的RiPP或细菌素的开放阅读框(ORFs)。该工具主要用于识别细菌的三类细菌素(I类、II类和III类),并支持基于Linux平台的操作。
6.2 antiSMASH
antiSMASH是另一种广泛使用的基因组挖掘工具,特别适用于次生代谢产物的基因簇挖掘。该工具可以检测包括RiPPs和非核糖体肽在内的多种BGC类型,使研究人员能够快速识别和注释可能具有抗菌活性的基因簇。这种工具尤其适用于分析真菌和植物的基因组。
6.3 ThioFinder
ThioFinder专注于发现含有硫的次生代谢产物,例如含有硫化键的抗菌肽。它能够预测与含硫代谢产物合成相关的酶,帮助研究人员鉴定出具有抗菌活性的含硫肽类。
6.4 RiPP-PRISM
RiPP-PRISM是一款专门针对RiPP类抗菌肽的基因组挖掘工具,能识别RiPP前体肽序列、后转译修饰(PTMs)及其最终产物结构。该工具在精确识别RiPP的基因簇方面具有独特优势,是RiPP基因组挖掘的强大工具之一。
6.5 RiPPMiner
RiPPMiner是结合了机器学习技术的工具,用于预测和注释RiPP类抗菌肽的前体肽序列和结构特征。通过机器学习算法,RiPPMiner能够更高效地识别RiPPs的功能和修饰模式,使其成为抗菌肽预测和设计中的重要工具。
7. 结论及未来展望
当前,人类医学中使用的抗生素超过75%来自天然来源或基于天然物质。尽管如此,自20世纪70年代以来,新的抗生素发现逐渐减少,主要原因在于实验室中难以培养土壤细菌。然而,分子技术的进步带来了新方法,可以克服这一问题。高效计算工具的开发在预测和筛选最优AMP候选物方面尤为关键,能够为实验研究提供支持。本综述探讨了多种抗菌肽及其最新发现技术,如基因组挖掘技术,这些技术通过不断改进的算法为AMP的预测与开发提供了希望,并推动了以数据驱动的方式进行AMP发现。结合特定AMP的序列信息,可利用肽序列数据训练各种监督学习模型。尽管在开发准确的抗菌化合物识别算法方面仍存在挑战,但多种AMP数据库的数据可促进更多计算方法和工具的创建。这些策略有望发现可以解决抗生素耐药性问题的AMPs,并在抗生素发现领域带来范式转变。因此,未来基于现有的基因组数据,有可能开发出更高度自动化、公开且用户友好的基因组挖掘平台,为开发新型抗菌剂奠定重要基础。