本周我们小组针对图像修复有了阶段性的进展,下面是修复效果展示:
原图像1
修复后1
修复前2
针对上周所遇到的问题,我进行了研究分析:对于SRGAN模型,其问题在于只能针对一部分特定图像(比如大小为80×70,修复效果健壮),一旦修改这个图像的大小,那么会很大程度影响修复成果,我尝试初始化图像像素大小,或者是预改善图像质量,都没有较好的改善,因此我选择寻找另外的方法。
其中比较关键的是加入了人脸强化修复face_enhance和人脸识别deepface,这样能够在不影响非人脸的修复下,同时对模糊的人脸进行强化修复。甚至比部分当前网页中一些免费的图像画质修复网站做的还好。
目前初步功能比较单一,之后可能会加入图像修补、用户选择性输出某倍数图像等等。
对于web方面:已经连接了数据库,后端调用python代码,用户可以输入单张图片, 然后弹出输出, 可以通过链接进行下载图片: