机器学习
爱吃酸菜鱼的汉堡
这个作者很懒,什么都没留下…
展开
-
最简单的神经网络内部计算原理理解
最简单的神经网络内部计算原理理解下面使用到的,是一个具有两个输入节点,以及两个输出节点的极简神经网络。层1 是输入节点,这层的节点只是展示输入值的功能,不做其他计算。从输入层到输出层之间总共有四种连接方式(即上面四个绿色箭头),首先,随机初始化这四个连接的权重。权重是神经网络进行学习的内容,这些权重持续进行优化,得到越来越好的结果。对于第二层输出层,这一层的每个节点,都需要计算出组合输入,即原始输入分别乘以相应的权重并相加,得到的组合输入。然后,利用激活函数,例如sigmoid函数:y=11+原创 2021-01-26 20:48:26 · 667 阅读 · 0 评论 -
机器学习算法衡量指标——准确率、精确率(查准率)、召回率(查全率)
机器学习算法衡量指标在分类问题中,将机器学习模型的预测与实际情况进行比对后,结果可以分为四种:TP、TN、FN、FP。每个的第一个字母:T/F,代表预测结果是否符合事实,模型猜得对不对,True or False。 每个的第二个字母:N/P,代表预测的结果,是Negative,还是Positive。因为对于分类问题,机器学习模型只会输出正类和负类两种预测结果。具体来说:结果描述TPTrue Positive,预测结果为正类,且与事实相符,即事实为正类。TNTrue Neg原创 2021-01-08 23:27:35 · 4247 阅读 · 0 评论 -
机器学习之——“损失函数”与“成本函数”的辨析
机器学习之——“损失函数”与“成本函数”的辨析损失函数与成本函数都表示预测结果与真实情况的偏差。损失函数:是针对单个样本,成本函数:针对整个数据集成本函数是由损失函数计算得到的。不过在实际计算中,可以选择令成本函数为损失函数的总和,也可以令成本函数是损失函数值的平均。无论是总和还是平均,最终目标都是希望最小化成本,从而使假设函数的预测最可靠。...原创 2021-01-08 17:04:11 · 1280 阅读 · 0 评论