最短路线问题【图论】【最短路】(四种方法)

本文详细介绍了四种解决最短路线问题的算法:Floyd算法的时间复杂度为O(N^3),通过枚举所有点来寻找最短距离;Dijkstra算法的时间复杂度为O(N^2),适用于求解单源最短路径;Bellman-Ford算法的时间复杂度为O(NE),通过松弛操作找寻最优路径;SPFA算法的时间复杂度为O(KE),使用队列优化,避免了Ford算法的无用功。
摘要由CSDN通过智能技术生成

Description
平面上有n个点(N<=100),每个点的坐标均在-10000~10000之间。其中的一些点之间有连线。若有连线,则表示可从一个点到达另一个点,即两点间有通路,通路的距离为两点直线的距离。现在的任务是找出从一点到另一点之间的最短路径。

Input
共有n+m+3行,其中:
第一行为一个整数n。
第2行到第n+1行(共n行),每行的两个整数x和y,描述一个点的坐标(以一个空格隔开)。
第n+2行为一个整数m,表示图中的连线个数。
此后的m行,每行描述一条连线,由两个整数I,j组成,表示第i个点和第j个点之间有连线。
最后一行:两个整数s和t,分别表示源点和目标点。

Output
仅一行,一个实数(保留两位小数),表示从S到T的最短路径的长度。

Sample Input
5
0 0
2 0
2 2
0 2
3 1
5
1 2
1 3
1 4
2 5
3 5
1 5

Sample Output
3.41

方 法 一 ( f l o y e d ) 方法一(floyed) floyed

时间复杂度: O O O( N 3 N^3 N3)

思路:

求两点之间(x,y)的距离是: s q r t ( d o u b l e ( ( 1 x − 2 x ) × ( 1 x − 2 x ) ) + d o u b l e ( ( 1 y − 2 y ) × ( 1 y − 2 y ) ) ) sqrt(double((1x−2x)×(1x−2x))+double((1y−2y)×(1y−2y))) sqrt(double((1x2x)×(1x2x))+double((1y2y)×(1y2y)))(勾股定理)然后枚举每个点到其他点的距离,再比较一下。虽然是图论可我硬打成了DP

代码:

#include<cstdio>
#include<iostream>
#include<cmath>//因为用到sqrt&&pow所以要开cmath这个头文件
#include<cstring>//应为用到memset。
using namespace std;
int n,m,x,y,s,t;
int a[101][5];
double f[101][101];//要用浮点类型。
int main()
{
   
	scanf("%d",&n);//输入。
	for(int i=1;i<=n;i++)
	scanf("%d%d",&a[i][1],&a[i][2]);//输入。
	scanf("%d",&m);//输入。
	memset(f,0x7f,sizeof(f));//给f赋个大值
	for(int i=1;i<=m;i++)//预处理xy的距离。
	{
   
    	scanf("%d%d",&x,&y);//输入。
		f[x][y]=f[y][x]=sqrt(pow(double(a[x][1]-a[y][1]),2)+pow(double(a[x][
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值