【图论】最短路问题大合集,五种算法刷爆最短路问题。

1.单源最短路问题

1.dijkstra算法

1.稠密图(朴素dijkstra)(适用于邻接矩阵)

思路:迭代n次,每次找到距离离起点最近的点,起点置为0,并且用距离最近的点更新其他点。

题目:

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。

请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。

输入格式:
第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式:
输出一个整数,表示 1 号点到 n 号点的最短距离。

如果路径不存在,则输出 −1。

数据范围
1≤n≤500,
1≤m≤105,
图中涉及边长均不超过10000。

#include<iostream>
#include<cstring>
using namespace std;
const int N=510;
int g[N][N];//map数组
int dist[N];//存每个点到原点距离
bool  st[N];//st数组用于标记是否用过
int n;
int m;
int dijk()
{
    memset(dist,0x3f,sizeof(dist));
    dist[1]=0;
    for(int i=0;i<n;i++)//迭代n次
    {
        
        int t=-1;//第一次初始化为-1,利于初始化dist
        for(int j=1;j<=n;j++)//找到最小的点并且未被标记
        {
            if(st[j]==0&&(t==-1||dist[j]<dist[t]))
            {
                t=j;
            }
        }
        st[t]=1;//标记
        for(int j=1;j<=n;j++)//更新每个点
        {
            dist[j]=min(dist[j],dist[t]+g[t][j]);
        }
    }

if(dist[n]==0x3f3f3f3f){return -1;}

    return dist[n];
}

int main()
{
    
    cin>>n>>m;
    memset(g,0x3f,sizeof(g));
    while(m--)
    {
        int a,b,w;
        cin>>a>>b>>w;
        g[a][b]=min(g[a][b],w);//防止重边与自环
    }
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值