1.单源最短路问题
1.dijkstra算法
1.稠密图(朴素dijkstra)(适用于邻接矩阵)
思路:迭代n次,每次找到距离离起点最近的点,起点置为0,并且用距离最近的点更新其他点。
题目:
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。
输入格式:
第一行包含整数 n 和 m。接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式:
输出一个整数,表示 1 号点到 n 号点的最短距离。如果路径不存在,则输出 −1。
数据范围
1≤n≤500,
1≤m≤105,
图中涉及边长均不超过10000。
#include<iostream>
#include<cstring>
using namespace std;
const int N=510;
int g[N][N];//map数组
int dist[N];//存每个点到原点距离
bool st[N];//st数组用于标记是否用过
int n;
int m;
int dijk()
{
memset(dist,0x3f,sizeof(dist));
dist[1]=0;
for(int i=0;i<n;i++)//迭代n次
{
int t=-1;//第一次初始化为-1,利于初始化dist
for(int j=1;j<=n;j++)//找到最小的点并且未被标记
{
if(st[j]==0&&(t==-1||dist[j]<dist[t]))
{
t=j;
}
}
st[t]=1;//标记
for(int j=1;j<=n;j++)//更新每个点
{
dist[j]=min(dist[j],dist[t]+g[t][j]);
}
}
if(dist[n]==0x3f3f3f3f){return -1;}
return dist[n];
}
int main()
{
cin>>n>>m;
memset(g,0x3f,sizeof(g));
while(m--)
{
int a,b,w;
cin>>a>>b>>w;
g[a][b]=min(g[a][b],w);//防止重边与自环
}

最低0.47元/天 解锁文章
1404

被折叠的 条评论
为什么被折叠?



