【图论】最短路问题大合集,五种算法刷爆最短路问题。

1.单源最短路问题

1.dijkstra算法

1.稠密图(朴素dijkstra)(适用于邻接矩阵)

思路:迭代n次,每次找到距离离起点最近的点,起点置为0,并且用距离最近的点更新其他点。

题目:

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。

请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。

输入格式:
第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式:
输出一个整数,表示 1 号点到 n 号点的最短距离。

如果路径不存在,则输出 −1。

数据范围
1≤n≤500,
1≤m≤105,
图中涉及边长均不超过10000。

#include<iostream>
#include<cstring>
using namespace std;
const int N=510;
int g[N][N];//map数组
int dist[N];//存每个点到原点距离
bool  st[N];//st数组用于标记是否用过
int n;
int m;
int dijk()
{
    memset(dist,0x3f,sizeof(dist));
    dist[1]=0;
    for(int i=0;i<n;i++)//迭代n次
    {
        
        int t=-1;//第一次初始化为-1,利于初始化dist
        for(int j=1;j<=n;j++)//找到最小的点并且未被标记
        {
            if(st[j]==0&&(t==-1||dist[j]<dist[t]))
            {
                t=j;
            }
        }
        st[t]=1;//标记
        for(int j=1;j<=n;j++)//更新每个点
        {
            dist[j]=min(dist[j],dist[t]+g[t][j]);
        }
    }

if(dist[n]==0x3f3f3f3f){return -1;}

    return dist[n];
}

int main()
{
    
    cin>>n>>m;
    memset(g,0x3f,sizeof(g));
    while(m--)
    {
        int a,b,w;
        cin>>a>>b>>w;
        g[a][b]=min(g[a][b],w);//防止重边与自环
    }
    cout<<dijk();
}

2.优化版dijkstra(适用于稀疏图)(邻接表存储)

思路:利用小根堆进行优化

给定一个 nn 个点 mm 条边的有向图,图中可能存在重边和自环,所有边权均为非负值。

请你求出 11 号点到 nn 号点的最短距离,如果无法从 11 号点走到 nn 号点,则输出 −1−1。

输入格式

第一行包含整数 nn 和 mm。

接下来 mm 行每行包含三个整数 x,y,zx,y,z,表示存在一条从点 xx 到点 yy 的有向边,边长为 zz。

输出格式

输出一个整数,表示 11 号点到 nn 号点的最短距离。

如果路径不存在,则输出 −1−1。

数据范围

1≤n,m≤1.5×1051≤n,m≤1.5×105,
图中涉及边长均不小于 00,且不超过 1000010000。
数据保证:如果最短路存在,则最短路的长度不超过 109109。

#include<iostream>
#include<cstring>
#include<queue>

using namespace std;

typedef pair<int, int> PII;

const int N = 100010; // 把N改为150010就能ac

// 稀疏图用邻接表来存
int h[N], e[N], ne[N], idx;
int w[N]; // 用来存权重
int dist[N];
bool st[N]; // 如果为true说明这个点的最短路径已经确定

int n, m;

void add(int x, int y, int c)
{
    //利用索引快速表示邻接表
    w[idx] = c;
    e[idx] = y;
    ne[idx] = h[x]; 
    h[x] = idx++;
}

int dijkstra()
{
    memset(dist, 0x3f, sizeof(dist));
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap; // 定义一个小根堆
    // 一个变量要是距离,另一个存入点号
    heap.push({ 0, 1 }); // 这个顺序不能倒,pair排序根据first,再根据second,所以是0,1
    while(heap.size())
    {
        PII k = heap.top(); // 取不在集合S中距离最短的点
        heap.pop();
        int ver = k.second, distance = k.first;

        if(st[ver]) continue;
        st[ver] = true;

        for(int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i]; // i只是个下标,e中在存的是i这个下标对应的点。
            if(dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({ dist[j], j });
            }
        }
    }
    if(dist[n] == 0x3f3f3f3f) return -1;
    else return dist[n];
}
int main()
{
    memset(h, -1, sizeof(h));
    scanf("%d%d", &n, &m);
    while (m--)
    {
        int x, y, c;
        scanf("%d%d%d", &x, &y, &c);
        add(x, y, c);
    }
    cout << dijkstra() << endl;
    return 0;
}

2.bellman-ford算法,适用于负权边并且有边数限制

思路::假设 1 号点到 n 号点是可达的,每一个点同时向指向的方向出发,更新相邻的点的最短距离,通过循环 n-1 次操作,若图中不存在负环,则 1 号点一定会到达 n 号点,若图中存在负环,则在 n-1 次松弛后一定还会更新

步骤:

for n次
for 所有边 a,b,w (松弛操作)
dist[b] = min(dist[b],back[a] + w)

给定一个 nn 个点 mm 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你求出从 11 号点到 nn 号点的最多经过 kk 条边的最短距离,如果无法从 11 号点走到 nn 号点,输出 impossible

注意:图中可能 存在负权回路 。

输入格式

第一行包含三个整数 n,m,kn,m,k。

接下来 mm 行,每行包含三个整数 x,y,zx,y,z,表示存在一条从点 xx 到点 yy 的有向边,边长为 zz。

点的编号为 1∼n1∼n。

输出格式

输出一个整数,表示从 11 号点到 nn 号点的最多经过 kk 条边的最短距离。

如果不存在满足条件的路径,则输出 impossible

数据范围

1≤n,k≤5001≤n,k≤500,
1≤m≤100001≤m≤10000,
1≤x,y≤n1≤x,y≤n,
任意边长的绝对值不超过 1000010000。

#include<iostream>
#include<cstring>
using namespace std;
const int N=510;
const int M=10010;
//bellman吊的一点在于存边的形式可以任意,结构体也能存
struct edge
{
    int a;
    int b;
    int w;
}e[M];
int dist[N];
int back[N];
int n,m,k;
int bell()

{
    memset(dist,0x3f,sizeof(dist));//初始化dist,除一号点以外,其他置为正无穷
    dist[1]=0;//一号点置为0
    for(int i=0;i<k;i++)//k次,边数限制
    {
        memcpy(back,dist,sizeof(dist));//拷贝一下,防止发生串联。
        for(int j=0;j<m;j++)
        {
            
            int a=e[j].a;
            int b=e[j].b;
            int w=e[j].w;
            dist[b]=min(dist[b],back[a]+w);//松弛操作
            
            
            
        }
    }
  
    
    return dist[n];
    
    
    
}
int main()
{
    
    cin>>n>>m>>k;
    for(int i=0;i<m;i++)
    {
        int a,b,w;
        scanf("%d%d%d",&a,&b,&w);
        e[i]={a,b,w};
  
    }
  int des=bell();
//要在main内判断,否则会出现-1,但是不是impossible、的情况
 if(des>(0x3f3f3f3f/2))puts("impossible");
 else
 {
     printf("%d",bell());
 }
    
    return 0;
}

3.spfa算法,bellman的优化,用bfs进行优化

思路:Bellman_ford算法会遍历所有的边,但是有很多的边遍历了其实没有什么意义,我们只用遍历那些到源点距离变小的点所连接的边即可,只有当一个点的前驱结点更新了,该节点才会得到更新;因此考虑到这一点,我们将创建一个队列每一次加入距离被更新的结点。

题目同bellman算法

#include<iostream>
#include<queue>
#include<cstring>
using namespace std;

const int N=1e5+10;

#define fi first
#define se second

typedef pair<int,int> PII;//到源点的距离,下标号

int h[N],e[N],w[N],ne[N],idx=0;
int dist[N];//各点到源点的距离
bool st[N];
int n,m;
void add(int a,int b,int c){
    e[idx]=b;w[idx]=c;ne[idx]=h[a];h[a]=idx++;
}

int spfa(){
    queue<PII> q;
    memset(dist,0x3f,sizeof dist);
    dist[1]=0;
    q.push({0,1});
    st[1]=true;
    while(q.size()){
        PII p=q.front();
        q.pop();
        int t=p.se;
        st[t]=false;//从队列中取出来之后该节点st被标记为false,代表之后该节点如果发生更新可再次入队
        for(int i=h[t];i!=-1;i=ne[i]){
            int j=e[i];
            if(dist[j]>dist[t]+w[i]){
                dist[j]=dist[t]+w[i];
                if(!st[j]){//当前已经加入队列的结点,无需再次加入队列,标记一下
                    st[j]=true;
                    q.push({dist[j],j});
                }
            }
        }
    }
     return dist[n];
}

int main(){
    scanf("%d%d",&n,&m);
    memset(h,-1,sizeof h);
    while(m--){
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
    }
    int des=spfa();
    if(des>(0x3f3f3f3f/2))puts("impossible");
 else
 {
     printf("%d",bell());
 }
    return 0;
}

2.多源汇最短路问题

1.Floyd算法

思路:3次循环,最好记,但是基于动态规划的算法,原理就先算了

模板如下:

void floyd() {
    for(int k = 1; k <= n; k++)
        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

  • 11
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
引用\[1\]提供了使用Python的networkx库绘制网络图和计算最短加权路径的示例代码。该代码使用了一个包含顶点和边的列表,并使用add_nodes_from和add_weighted_edges_from方法将它们添加到图中。然后,使用nx.shortest_path_length方法计算了从顶点v1到顶点v11的最短加权路径长度为13。\[1\] 引用\[2\]提供了一个计算最短路径的Python程序示例。该程序使用了numpy和networkx库。首先,定义了一个包含顶点和边的列表,并使用add_nodes_from和add_weighted_edges_from方法将它们添加到图中。然后,使用nx.shortest_path_length方法计算了最短路径长度,并将结果存储在一个字典中。接下来,使用numpy创建了一个6x6的零矩阵,并使用两个嵌套的for循环将最短路径长度填充到矩阵中。最后,使用矩阵乘法计算了运力,并找到了最小运力和对应的位置。\[2\] 引用\[3\]提供了关于Dijkstra算法的一些背景信息。Dijkstra算法是一种寻找最短路径的算法,适用于所有权重大于等于0的情况。它可以用于解决从一个起始点到任意一个点的最短路径问题。\[3\] 综上所述,如果你想在Python中计算图论中的最短路径,可以使用networkx库和Dijkstra算法。你可以根据引用\[1\]和引用\[2\]中的示例代码进行操作。 #### 引用[.reference_title] - *1* *3* [运筹学——图论与最短距离(Python实现)](https://blog.csdn.net/weixin_46039719/article/details/122521276)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [数学建模:图论模型 — 最短路模型示例 (Python 求解)](https://blog.csdn.net/qq_55851911/article/details/124776487)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值