题目:
Smart是一位颇有成就的艺术家,他因油画作品《我爱北京天安门》闻名于世界。现在,他为了报答帮助他的同行们,准备开一个舞会。
Smart准备邀请n个已经确定的人,可是问题来了:
这n个人每一个人都有一个小花名册,名册里面写着他能够通知到的人的名字。比如说在A的人名单里写了B,那么表示A能够通知到B;但是B的名单里不见得有A,也就是说B不见得能够通知到A。
Smart觉得需要确定自己需要通知到多少个人(人数m),能够实际将所有n个人都通知到。并求出一种方案以确定m的最小值是多少。
注意:自己的名单里面不会有自己的名字。
输入:
第一行一个数n(1≤n≤200)。接下来n行,第i+1行表示编号为i的人的小花名册名单,名单以0结束。
输出:
一个整数,即m的值。
样例输入:
5 1
2 0
1 3 0
0
0
1 0
样例输出:
2
思路:
用floyed求强连通分量,然后缩点找入度为零的点,把入读为0的点用ans累加。
入度:入度是图论算法中重要的概念之一。它通常指有向图中某点作为图中边的终点的次数之和。
代码:
#include<cstdio>
#include<iostream>
int n,x,a[1000][1000],ooo[1000],ans,sum[1000],num;
using namespace std;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&x);
while(x!=0)
{
a[i][x]=1;//邻接矩阵
scanf("%d",&x);
}
}
for(int k=1;k<=n;k++)//floyed
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i!=j&&i!=k&&k!=j)
a[i][j]=a[i][j]||(a[i][k]&&a[k][j]);//强连通分量
for(int i=1;i<=n;i++)//缩点
if (!ooo[i])
{
num++;
ooo[i]=num;
for (int j=i+1;j<=n;j++)
if (a[i][j]&&a[j][i]) ooo[j]=num;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(a[i][j]&&ooo[i]!=ooo[j])sum[ooo[j]]=1;//入读为0
for(int i=1;i<=num;i++)
if(!sum[i])
ans++;//累加
printf("%d",ans);//输出。
return 0;
}