【图论】【强连通分量】舞会邀请

题目:

Smart是一位颇有成就的艺术家,他因油画作品《我爱北京天安门》闻名于世界。现在,他为了报答帮助他的同行们,准备开一个舞会。

Smart准备邀请n个已经确定的人,可是问题来了:

这n个人每一个人都有一个小花名册,名册里面写着他能够通知到的人的名字。比如说在A的人名单里写了B,那么表示A能够通知到B;但是B的名单里不见得有A,也就是说B不见得能够通知到A。

Smart觉得需要确定自己需要通知到多少个人(人数m),能够实际将所有n个人都通知到。并求出一种方案以确定m的最小值是多少。

注意:自己的名单里面不会有自己的名字。


输入:

第一行一个数n(1≤n≤200)。接下来n行,第i+1行表示编号为i的人的小花名册名单,名单以0结束。


输出:

一个整数,即m的值。


样例输入:

5 1

2 0

1 3 0

0

0

1 0

样例输出:

2

思路:

用floyed求强连通分量,然后缩点找入度为零的点,把入读为0的点用ans累加。

入度:入度是图论算法中重要的概念之一。它通常指有向图中某点作为图中边的终点的次数之和。


代码:

#include<cstdio>
#include<iostream>
int n,x,a[1000][1000],ooo[1000],ans,sum[1000],num;
using namespace std;
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&x);
		while(x!=0)
		{
			a[i][x]=1;//邻接矩阵
			scanf("%d",&x);
		}
	}
	for(int k=1;k<=n;k++)//floyed
	for(int i=1;i<=n;i++)
	for(int j=1;j<=n;j++)
	if(i!=j&&i!=k&&k!=j)
	a[i][j]=a[i][j]||(a[i][k]&&a[k][j]);//强连通分量
	for(int i=1;i<=n;i++)//缩点
	if (!ooo[i])
	{
		num++;
		ooo[i]=num;
		for (int j=i+1;j<=n;j++)
		if (a[i][j]&&a[j][i]) ooo[j]=num;
	}
	for(int i=1;i<=n;i++)
	for(int j=1;j<=n;j++)
	if(a[i][j]&&ooo[i]!=ooo[j])sum[ooo[j]]=1;//入读为0
	for(int i=1;i<=num;i++)
	if(!sum[i])
	ans++;//累加
	printf("%d",ans);//输出。
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值