【最小生成树(prim)】【并查集(Kruskal)】最优布线问题(三种方法)

该博客讨论了如何解决最优布线问题,通过Prim和Kruskal两种算法实现。Prim算法利用邻接矩阵和邻接表两种数据结构,而Kruskal算法结合并查集,目标是找到最小生成树,确保所有计算机间接连通,降低连接费用。文章提供了思路和方法详解。
摘要由CSDN通过智能技术生成

题目:

学校有n台计算机,为了方便数据传输,现要将它们用数据线连接起来。两台计算机被连接是指它们之间有数据线连接。由于计算机所处的位置不同,因此不同的两台计算机的连接费用往往是不同的。
当然,如果将任意两台计算机都用数据线连接,费用将是相当庞大的。为了节省费用,我们采用数据的间接传输手段,即一台计算机可以间接的通过若干台计算机(作为中转)来实现与另一台计算机的连接。
现在由你负责连接这些计算机,你的任务是使任意两台计算机都连通(不管是直接的或间接的)。


输入:

第一行为整数n(2<=n<=100),表示计算机的数目。此后的n行,每行n个整数。第x+1行y列的整数表示直接连接第x台计算机和第y台计算机的费用。


输出:

一个整数,表示最小的连接费用。


样例输入:

3
0 1 2
1 0 1
2 1 0

样例输出:

2

{注:表示连接1和2,2和3,费用为2}


思路#1( p r i m prim prim):

p r i m prim prim+邻接矩阵来做( 方 法 1 方法1 1

p r i m prim prim+邻接表来做( 方 法 2 方法2 2

prim算法大概和dij差不多,也是蓝白点思想,用于求最小生成树。


方 法 一 方法一

#include<iostream>
#include<cstdio>
using namespace std;
int ans,n,a[1000][1000];//邻接矩阵
int small[1000];
bool scs[1000];
int main()
{
   
  scanf("%d",&n);
  for(int i=1;i<=n;i++)
  for(int j=1;j<=n;j++)
  scanf("%d",&a[i][j
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值