【算法总结】-字符串匹配技术(一)

       字符串匹配是计算机科学中最古老、研究最广泛的问题之一。它是字符串算法中的一类,用以试图在一长字符串或文章中,找出其是否包含某一个或多个字符串,以及其位置。
       说到字符串匹配,那么我们的脑海中第一冒出来的则是一一比较,直到比较到一样的字符串为止。这种方式其实是我们最容易想到的,但是也是最笨的一种比较方式。除了这种蛮力法(朴素算法)之外,常用的其实还有以下几种:Horspool,BM,KMP。
本篇我们则通过深入其中领悟这几种常见的算法。

一:BF算法

BF 全称是Brute Force,朴素的模式匹配算法,其思想其实就是穷举法,采用蛮力的方式执行。
蛮力法则是采用一步一挪位的方式,进行比较,举例如下:(表格只是便于对应)
蛮力法举例
java代码如下:

public static void main(String[] args) {
		//目标字符串
		String[] target ={"J","I","M","B","A","L","_","I","B","B","A","R","B","E","R","W","_"};
		//待查找字符串
		String[] pattern = {"B","A"};
		List<Integer> result = compareAndFind(target, pattern);
		//包含几个查找的字符串,且其开始的位置
		System.out.println("num="+result.size()+";position="+result.toString());
	}

	public static List<Integer> compareAndFind(String[] target, String[] pattern) {
		List<Integer> result = new ArrayList<>();
		for (int i = 0; i < target.length - pattern.length; i++) {
			int j = 0;
			//用需查找的第一个字母和目标字符串一一比较
			while (j < pattern.length && pattern[j] == target[i + j]) {
				//依次对j加一,一一比较
				j = j + 1;
				//若pattern都依次查到,则证明存在该字符串
				if (j == pattern.length) {
					result.add(i);
				}
			}
		}
		return result;
	}

二、Horspool算法

对于Horspool算法,我们分4中情况来考虑:
注:pattern表示需要需要查找的模式字符串
C为对其模式最后一个字符

4种情况表明

情况1
p a t t e r n = { 不 存 在 C pattern = \begin{cases} 不存在C \end{cases} pattern={C
情况2
p a t t e r n = { 存 在 C 不 是 最 后 一 个 字 符 pattern= \begin{cases} 存在C\\ 不是最后一个字符 \end{cases} pattern={C
情况3
p a t t e r n = { 存 在 C 正 好 是 最 后 一 个 字 符 , 且 前 m − 1 中 不 存 在 C pattern= \begin{cases} 存在C\\ 正好是最后一个字符,且前m-1中不存在C \end{cases} pattern={Cm1C
情况4
p a t t e r n = { 存 在 C 正 好 是 最 后 一 个 字 符 , 且 前 m − 1 中 存 在 C pattern= \begin{cases} 存在C\\ 正好是最后一个字符,且前m-1中存在C \end{cases} pattern={Cm1C
pattern

情况移动方式
情况1和情况3模式的长度m
情况2和情况4模式前m-1个字符中最右边的c到模式最后一个字符的距离

Horspool算法步骤

  • 构造移动表,模式m,文本w
  • 将模式m与文本w开始处对齐
  • 按照如上的四种情况重复过程,直到模式和文本中的响应字符或者完全匹配。

举例说明

文本:JIM_SAW_ME_IN_A_BARBERSHOP
模式:BARBER
注:若为情况2或者情况4,那么我们模式串中有4个字符出现,移动的距离分别为:

  • E移动1位;
  • B移动2位(B最最右边的一个);
  • R移动3位;
  • A移动4位;
  • 其他字符都是6位;
轮回一:字符C为A,存在C,且不是最后一个字符,所以符合情况2.
移动的距离为A的移动距离,也就是4
JIM_SA
W_ME_IN_A_BARBERSHOP
BARBER
BARBER
轮回二:字符C为E,存在C,且不是最后一个字符,所以符合情况2.
移动的距离为E的移动距离,也就是1
JIM_SAW_ME
_IN_A_BARBERSHOP
BARBER
BARBER
BARBER
轮回三:字符C为_,不存在C,所以符合情况1
移动的距离为其他字符的距离,也就是6
JIM_SAW_ME_
IN_A_BARBERSHOP
BARBER
BARBER
BARBER
BARBER
轮回四:字符C为B,存在C,且不是最后一个字符,所以符合情况2.
移动的距离为B的距离,也就是2
JIM_SAW_ME_IN_A_B
ARBERSHOP
BARBER
BARBER
BARBER
BARBER
BARBER
轮回五:字符C为R,存在C,正好是最后一个字符,且前m-1中存在C,所以符合情况四
移动的距离为R的距离,也就是3
JIM_SAW_ME_IN_A_BAR
BERSHOP
BARBER
BARBER
BARBER
BARBER
BARBER
BARBER

相比于蛮力法,使用Harspool,将本来的16步缩减至了6步。

三、BM算法

四、KMP算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值