Pytorch为模型参数添加噪声

🌟模型添加噪声,增强鲁棒性

在这里插入图片描述

为模型添加噪声主要有两种方式

1️⃣ 为训练集添加噪声,训练时加噪

2️⃣ 为训练好的模型参数添加噪声,训练后加噪

第一种这里不详细说,transforms里提供了一些裁剪和旋转图片的方式,此外可以对图片添加高斯噪声等随机性。

如何实现第二种噪声,特别是对于大型网络,每一层的参数大小可能处在不同的数量级,那么是我们这里重点要谈的部分。
在这里插入图片描述

σ G ≈ Δ ϵ 2 ln ⁡ 1.25 δ \sigma_G \approx \frac{\Delta}{\epsilon} \sqrt{2\ln \frac{1.25}{\delta}} σGϵΔ2lnδ1.25
根据论文里的想法,就是如果要达到 L 2 L_2 L2级别的敏感度,就要添加如上所示公式的噪声(由果及因)。

但是其实到实验里,最后都是慢慢去试出来,给一个高斯噪声,不断的去测试对 l o s s loss loss的影响,对隐私的保护性,达到一个均衡。


但是当应用在深度神经网络中时,因为每一层的数量级可能不同,因此就没法像在论文中一样添加一样的高斯噪声。
有人给出了对于模型中的参数,计算出标准差,从而得到所需要的最小下界差分隐私量。
或者也可以计算每一层的 l 2 l_2 l2范数,将 l 2 l_2 l2范数作为一个高斯噪声的系数。
那么对应到代码里实现就是:遍历每一层的参数,计算每一层参数的标准差or范数,以这个数值作为敏感度,来计算所需要的噪声量。
这里的 δ 和 ϵ \delta和\epsilon δϵ都是超参数,都需要慢慢地去试出来。

lamda = 0.001
	for name, param in self.global_model.named_parameters():
		if 'bias' in name or 'bn' in name:
			# 不对偏置和BatchNorm的参数添加噪声
			continue
		std = lamda * param.data.std()
		noise = torch.normal(0, std, size=param.size()).cuda()
		param.data.add_(noise)

也可以偷懒,直接简略成 λ ∗ S t \lambda*S_t λSt,通过不同的 λ \lambda λ去尝试这个噪声的量,来实现模型加噪的效果。 λ \lambda λ如果过大,会造成模型不收敛,波动大, λ \lambda λ如果太小,那么噪声就起不到效果,需要不断地去尝试权衡,达到较好的效果。

通常不对偏置和 BatchNorm 参数添加噪声的原因如下:

  1. 对于偏置来说,它只是单独地加在每个卷积核输出上的一个常量,不涉及卷积核之间的交互。因此,即使偏置没有添加噪声,模型在一定程度上也能保持随机性和泛化性能。
  2. BatchNorm 层的参数包括平均值和标准差,它们是在每一层的 mini-batch 上计算得到的,因此可以看作是一个统计量。在训练过程中,这些参数被不断更新,使得 BatchNorm 层的输出在 mini-batch 中具有一定的随机性。因此,即使不对 BatchNorm 参数添加噪声,模型仍然能够具有一定的随机性和泛化性能。
  3. 另外,添加噪声也可能会对 BatchNorm 层的性能造成一定的负面影响,因为它可能会破坏 BatchNorm 层对输入数据的正则化效果。
    因此,在实践中,通常不对偏置和 BatchNorm 参数添加噪声。当然,具体是否添加噪声还要根据具体任务和实验结果进行调整。
  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 9
    评论
### 回答1: 在 PyTorch添加高斯噪声可以使用 `torch.randn` 函数生成随机数。以下是一个简单的示例,演示如何向神经网络添加高斯噪声。 ```python import torch class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = torch.nn.Linear(10, 5) self.fc2 = torch.nn.Linear(5, 1) def forward(self, x): x = torch.nn.functional.relu(self.fc1(x)) x = self.fc2(x) return x net = Net() noise_stddev = 0.1 for epoch in range(10): for input, target in dataset: # 向输入添加高斯噪声 noisy_input = input + noise_stddev * torch.randn(input.size()) output = net(noisy_input) loss = torch.nn.functional.mse_loss(output, target) optimizer.zero_grad() loss.backward() optimizer.step() ``` 在上面的示例中,我们将 `torch.randn` 函数返回的随机数乘以 `noise_stddev`,然后将其添加到输入张量中,从而在神经网络的输入中添加高斯噪声。 ### 回答2: 在PyTorch中,要为神经网络添加高斯噪声,可以使用torch.randn函数生成服从标准正态分布的随机噪声,并将其与输入数据相作为网络输入。下面是一个示例代码: ```python import torch import torch.nn as nn # 定义带噪声输入的神经网络 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(10, 20) self.fc2 = nn.Linear(20, 10) def forward(self, x): # 生成高斯噪声 noise = torch.randn_like(x) # 将噪声与输入数据相 x_noisy = x + noise x = self.fc1(x_noisy) x = self.fc2(x) return x # 创建网络实例 net = Net() # 定义输入数据 input_data = torch.randn(32, 10) # 输入数据为32个样本,每个样本包含10个特征 # 使用带噪声的输入数据进行网络前向传播 output = net(input_data) # 计算损失、反向传播等其他的训练过程... ``` 在这个例子中,首先定义了一个简单的神经网络类`Net`,其中有两个全连接层。在网络的`forward`函数中,生成高斯噪声`noise`,然后将其与输入数据`x`相得到带噪声的输入`x_noisy`,再将`x_noisy`传入网络进行前向传播,最终输出网络的预测结果。通过使用`torch.randn_like()`函数生成与输入数据形状相同的噪声,确保了噪声与输入数据具有相同的形状和维度。 总结起来,这个例子就是利用PyTorch中的函数生成高斯噪声,并将其添加到神经网络的输入中,实现了对输入数据的噪处理。 ### 回答3: 在PyTorch中,我们可以使用torch.randn()函数来生成高斯分布的噪声,并将其添加到神经网络的输入数据中。以下是一个简单的例子: 首先,我们需要导入必要的库: ```python import torch import torch.nn as nn import torch.optim as optim ``` 接下来,我们可以定义一个简单的神经网络模型: ```python class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.fc = nn.Linear(10, 1) def forward(self, x): x = self.fc(x) return x ``` 我们使用一个简单的全连接层作为模型的结构。 然后,我们可以定义一个训练函数,用于训练模型。在训练函数中,我们将输入数据添加高斯噪声并传入模型进行训练: ```python def train(model, input_data, target_data, noise_std, num_epochs): criterion = nn.MSELoss() optimizer = optim.SGD(model.parameters(), lr=0.01) for epoch in range(num_epochs): optimizer.zero_grad() # 为输入数据添加高斯噪声 noisy_input = input_data + noise_std * torch.randn(input_data.shape) output = model(noisy_input) loss = criterion(output, target_data) loss.backward() optimizer.step() if (epoch+1) % 10 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) ``` 在每个训练周期中,我们首先将参数的梯度清零。然后,我们将高斯噪声添加到输入数据中,并传入模型进行前向传播得到输出。接下来,计算损失函数,并进行反向传播和参数更新。最后,每隔10个周期打印一次损失函数的值。 最后,我们可以创建一些虚拟的输入数据和目标数据,并调用训练函数进行模型训练: ```python input_data = torch.randn(100, 10) # 输入数据是形状为(100, 10)的高斯分布数据 target_data = torch.randn(100, 1) # 目标数据是形状为(100, 1)的高斯分布数据 model = MyModel() train(model, input_data, target_data, noise_std=0.1, num_epochs=100) ``` 在这个例子中,输入数据和目标数据都是形状为(100, 10)和(100, 1)的高斯分布数据。我们创建一个模型实例并调用训练函数进行模型训练,同时设置高斯噪声的标准差为0.1,并进行100个训练周期。 通过这个例子,我们可以学习如何在PyTorch添加高斯噪声到神经网络的输入数据中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

volcanical

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值