问题描述:
使用keras搭建siamese网络时,遇到错误如下:
OOM when allocating tensor with shape[129024,4096] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[Node: dense_1/kernel/Assign = Assign[T=DT_FLOAT, _class=["loc:@dense_1/kernel"], use_locking=true, validate_shape=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](dense_1/kernel, dense_1/kernel/cond/Merge)]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
经查阅资料认为是内存不足。故修改batch_size,修改原始数据集样本对的生成方式。均无效。
经过仔细思考认为应该不是内存不足(原始数据集600M),而我是在服务器(内存128g)上运行,且服务器上没有其他人在使用。在程序运行期间使用top指令观察了服务器的内存使用情况,free部分一直有100g以上。排除内存不足的情况。
考虑可能显存不足(关于内存和显存的具体区别和使用不甚了解,请大家不吝赐教)。仔细阅读了错误日志(以后不能只关注Traceback 部分&#x