- 博客(31)
- 资源 (2)
- 收藏
- 关注
原创 1.6 例子:CIFAR-10分类
CIFAR-10分类,步骤如下:1)使用torchvision加载并预处理CIFAR-10数据集2)定义网络3)定义损失函数和优化器4)训练网络并更新网络参数5)测试网络CIFAR-10数据加载及预处理CIFAR-10是一个常用的彩色图片数据集,它有10个类别airplane、automobile、bird、cat、deer、dog、frog、horse、ship和tr...
2019-04-23 11:28:39 4022 3
原创 自然计算中P类问题、NP问题、NPC问题、以及NP-hard问题理解
仅用于个人学习整理:1.P类问题P类问题是指一类能够用确定性算法在多项式时间内求解的判定问题。2.NP问题NP类问题是指一类能够用不确定性算法在多项式时间内求解的判定问题。 P类问题和NP问题记忆简单。下面的NPC问题和NP-hard问题用集合的形式可能会更好理解与记忆,请对照集合关系看可能较容易理解。 3.NPC问题若一个问题D属于NPC问题,则应满足:...
2019-01-06 17:04:44 1206
原创 目标检测、工业缺陷、图像分割----深度学习数据集归纳
95种深度学习开源数据集。包括了11个方向(小目标检测、目标检测、工业检测、人脸识别、人体姿态估计、自动驾驶、目标跟踪、图像分类、图像识别、图像分割、NLP相关)的数据集以及给出了相应的开源链接。对于我们的问题研究过程中提供了数据集的便利。同时,多样的数据集展示了有趣而多样的深度学习任务方向。...
2022-06-30 15:55:40 2239 2
原创 投稿参考:常见/综合计算机技术相关的2021年度SCI期刊影响因子预测(IF≥5)
投稿参考:常见/综合计算机技术相关的2021年度SCI期刊影响因子预测(IF≥5)
2022-06-16 11:32:45 998
原创 Viso快速绘制卷积块
取常规矩形块或者方块拉至适合大小,选定视图--》加载项--》其他Visio方案--》排列形状设置如下图所示。设置以形状边缘之间行列间距为0。设定自己所需要的行列块数。以2x3卷积核为例,绘制结果:...
2022-05-17 15:53:52 1414
原创 Multi-level Wavelet-CNN for Image Restoration(多级小波CNN之图像恢复)
目录1. 摘要解读2. 介绍3. 相关工作4. 方法5. 实验6. 结论1. 摘要解读文章动机:普通CNN通常以牺牲计算成本为代价扩大感受野。针对于现有的扩张滤波解决以上问题的过程中,收到网格效应影响而产生的感受野是只具有棋盘图案的爱护如图像的稀疏采样。本文提出多级小波CNN,用以更好地权衡感受野大小和计算效率。网络实现:通过修改后的 U-Net 架构,引入了小波变换来减小收缩子网络中特征图的大小。此外,另一个卷积层进一步用于减少特征图的通道。在扩展的子网络中,然后部
2022-02-14 09:52:32 3415
原创 python代码小技巧
1. 指定GPU运行import os os.environ["CUDA_VISIBLE_DEVICES"]="0,1"#指定0,1号GPU上运行代码2. 查看GPU占用率watch -n 1 -d nvidia-smi #每间隔1s刷新显示3. 打印设计网络参数量print ("Total number of paramerters in networks is {} ".format (sum (x.numel () for x in model.parameters (
2021-03-30 11:48:26 88
原创 numpy加速-->cupy 安装
错误做法: pip install cupy直接安装往往会报错的,最后出现安装不成功提示。正确做法:1. 在以上错误信息中可以直接看到自己的cuda版本,例如我的是cuda9.02. pip install cupy-cuda903.安装成功
2021-03-17 11:37:28 224
原创 代码速度优化
记录一段相同功能,速度差异天壤之别的小段代码:我写的,运行速度:乌龟界的扛把子!!!zero = torch.zeros_like (d)d_nonoise = torch.zeros_like (d)for i in range (zero.shape[0]): for j in range (zero.shape[1]): d_nonoise[i][j] = torch.where (d[i][j] < (d[i][j].mean () + 3 * d[i][
2020-12-15 21:21:54 170
原创 Latex使用注意事项
1.在引用参考文献时,出现的&与_符号应该用\&,\_替换。可以用search\replace菜单栏进行批量替换2.在引用谷粉bibtex生成的中文参考文献,需要将索引名改为英文。...
2019-09-21 14:44:30 269
原创 python异常处理
#没有异常处理num = int('yyt')print(num) #报错#异常处理try: num = int('yyt') #try里的代码是受保护的 print(num)except Exception as e: print(e) #输出invalid literal for int() with b...
2019-06-21 11:17:53 155
原创 3.2 模型保存、加载
Table of Contents模型保存常规模型加载 模型详细信息保存模型参数冻结模型保存# 保存整个网络torch.save(net, PATH)# 保存网络中的参数, 速度快,占空间少torch.save(net.state_dict(),PATH)常规模型加载 model_dict=torch.load(PATH)model_dict=m...
2019-06-05 10:46:44 260
原创 3.1常用的神经网络层(一)图像相关层
图像相关层主要包括卷积层(Conv)、池化层(Pool)等,这些层在实际使用中可分为一维(1D)、二维(2D)和三维(3D),池化方式又分为平均池化(AvgPool)、最大池化(MaxPool)、自适应池化(AdaptiveAvgPool)等。卷积层除了常用的前向卷积外,还有逆卷积(TransposeConv)。from PIL import Imagefrom torchvision.t...
2019-04-24 21:37:26 571
原创 2 神经网络工具箱nn
1.实际使用中,最常见的做法是继承nn.Module,撰写自己的网络层。下面将介绍如何使用nn.Module实现自己的全连接层。全连接层,又称仿射层,输入y和x满足y=Wx+b,W,b是可学习参数。import torch as timport torch.nn as nnimport torch.nn.functional as Ffrom torch.autograd impo...
2019-04-24 15:54:19 317
原创 IndexError: invalid index of a 0-dim tensor. Use tensor.item() to convert a 0-dim tensor to a Python
报错:running_loss += loss.data[0]Traceback (most recent call last): File "/B/Practice/csdncifar-10.py", line 98, in <module> running_loss += loss.data[0]IndexError: invalid index of a ...
2019-04-23 11:31:48 10492
原创 1.5 nn.Module 神经网络(三)
1.优化器1.1 在反向传播计算完所有参数的梯度后,还需要使用优化方法更新网络的权重和参数。例如,随机梯度下降法(SGD)的更新策略如下:weight= weight-learning_rate*gradient手动实现如下:learning_rate=0.01for f in net.parameters(): f.data.sub_(f.grad_data*lea...
2019-04-17 21:32:51 208
原创 1.4 nn.Module 神经网络(二)
损失函数:1.nn.MSELoss用来计算均方误差nn.CrossEntropyLoss用来计算交叉熵损失。eg:import torch.nn as nnimport torch.nn.functional as Ffrom torch.autograd import Variableimport torch as tclass Net(nn.Module): ...
2019-04-17 19:50:38 506
原创 1.3 nn.Module 神经网络(一)
torch.nn是专门为神经网络设计的模块化接口。nn构建于Autograd之上,用来定义和运行神经网络。nn.Module是nn中最重要的类,可以把它看作一个网络的封装,包含网络各层定义以及forward方法、调用forward(input)方法,可返回前向传播结果。下面以LeNet网络为例:...
2019-04-16 21:57:11 1143
原创 1.2 Autograd:自动微分
Pytorch的Autograd模块实现了深度学习算法本质上的反向传播求导数的功能。autograd.Variable是Autograd中的核心类,简单封装了Tensor,支持几乎所有的Tensor操作。Tensor在被封装为Variable之后,可以调用.backward实现反向传播,自动计算所有梯度。1. autograd.Variable主要包括三个属性:① data: 保存Va...
2019-04-16 11:10:51 206
原创 1.1 tensor
1.from __future__ import print_functionimport torch as tx=t.Tensor(5,3)#构建5*3矩阵,只是分配了空间,并未初始化print(x)2.from __future__ import print_functionimport torch as tx=t.randn(5,3)#使用[0,1]均匀分布随机初始...
2019-04-15 22:46:11 268
原创 Pytorch入门(一)
PyTorch 和 TensorFlow、Caffe 等框架最大的区别就是他们拥有不同的计算图表现形式。 Pytorch中,每次都会重新构建一个新的计算图。Tensorflow计算采用静态图,先定义计算图,然后不断使用它。Pytorch在写法上和Python是语法一致,比tensorflow更加简单方便。Pytorch设计遵循tensor-->variable(autograd)--...
2019-04-15 20:20:02 175
原创 目标检测中的关键点检测
在图像处理中,关键点本质上是一种特征,是对一个固定区域或者空间物理关系的抽象描述,描述的是一定邻域范围内的组合或上下文关系。它不仅仅是一个点信息,或代表一个位置,更代表着上下文与周围邻域的组合关系。 关键点检测有两种方法:点回归的方法,点分类的方法。这两种方法都可以找出点在图像当中的位置与关系。 关键点检测技术原理:经典关键点检测网络设计简单:一个分支...
2019-04-10 20:53:46 5311
原创 神经网络中padding的两种方式“SAME”和“VALID”
1.padding=‘SAME‘ 卷积核在进行卷积时候,假设原图是3X3,卷积核为2x2,步长为2,当向右滑动两步之后,VALID方式发现余下的窗口不到2×2所以直接将第三列舍弃,而SAME方式并不会把多出的一列丢弃,但是只有一列了就填充一列02.1.padding=‘VALID’ 卷积核在进行卷积时候,假设原图是3X3,卷积核为2x2,步长为2,当向右滑动...
2019-01-23 22:40:13 6035 3
原创 Tensorflow:If you want to see a list of allocated tensors when OOM happens, add report_tensor_alloca
错误:ensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[2,33,1024,1024] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_...
2019-01-22 17:09:18 13969
原创 Ubuntu16.04下Cuda与Cudnn版本查询
1.Cuda版本查询命令:nvcc -V显示如下:nvcc: NVIDIA (R) Cuda compiler driverCopyright (c) 2005-2017 NVIDIA CorporationBuilt on Fri_Sep__1_21:08:03_CDT_2017Cuda compilation tools, release 9.0, V9.0.176 ...
2019-01-22 10:32:27 1769
3D重建:立体匹配中的单目、双目以及多视角重建概念区分?
2022-09-02
TA创建的收藏夹 TA关注的收藏夹
TA关注的人