0015算法笔记——【动态规划】多边形游戏问题

 1、问题描述:   

      给定N个顶点的多边形,每个顶点标有一个整数,每条边上标有+(加)或是×(乘)号,并且N条边按照顺时针

依次编号为1~N。下图给出了一个N=4个顶点的多边形。

     游戏规则 :(1) 首先,移走一条边。 (2) 然后进行下面的操作: 选中一条边E,该边有两个相邻的顶点,不妨称为V1和V2。对V1和V2顶点所标的整数按照E上所标运算符号(+或是×)进行运算,得到一个整数;用该整数标注一个新顶点,该顶点代替V1和V2 。 持续进行此操作,直到最后没有边存在,即只剩下一个顶点。该顶点的整数称为此次游戏的得分(Score)。

 

    2、问题分析:

     解决该问题可用动态规划中的最优子结构性质来解。

    设所给的多边形的顶点和边的顺时针序列为op[1],v[1],op[2],v[2],op[3],…,op[n],v[n] 其中,op[i]表示第i条边所对应的运算符,v[i]表示第i个顶点上的数值,i=1~n。

    在所给的多边形中,从顶点i(1<=i<=n)开始,长度为j(链中有j个顶点)的顺时针链p(i,j)可表示为v[i],op[i+1],…,v[i+j-1],如果这条链的最后一次合并运算在op[i+s]处发生(1<=s<=j-1),则可在op[i+s]处将链分割为两个子链p(i,s)和p(i+s,j-s)。

    设m[i,j,0]是链p(i,j)合并的最小值,而m[i,j,1]是最大值。若最优合并在op[i+s]处将p(i,j)分为两个长度小于j的子链的最大值和最小值均已计算出。即:

    a=m[i,s,0]  b=m[i,s,1]  c=m[i,s,0]  d=m[i,s,1]

   (1) 当op[i+s]=’+’时

    m[i,j,0]=a+c ;m[i,j,1]=b+d

   (2) 当op[i+s]=’*’时

    m[i,j,0]=min{ac,ad,bc,bd} ; m[i,j,1]=max{ac,ad,bc,bd}

    由于最优断开位置s有1<=s<=j-1的j-1中情况。 初始边界值为 m[i,1,0]=v[i]   1<=i<=n m[i,1,1]=v[i]   1<=i<=n

    因为多变形式封闭的,在上面的计算中,当i+s>n时,顶点i+s实际编号为(i+s)modn。按上述递推式计算出的m[i,n,1]记为游戏首次删除第i条边后得到的最大得分。

      算法具体代码如下:

[cpp]  view plain  copy
  1. //3d6 多边形游戏  
  2. #include "stdafx.h"  
  3. #include <iostream>   
  4. using namespace std;   
  5.   
  6. #define NMAX 100  
  7. int N,m[NMAX+1][NMAX+1][2],v[NMAX+1];   
  8. char op[NMAX+1];  
  9.   
  10. void MinMax(int n,int i,int s,int j,int &minf,int &maxf);  
  11. int PloyMax(int n,int& p);  
  12.   
  13. int main()   
  14. {    
  15.     int p;  
  16.     cout<<"请输入多边形顶点数:"<<endl;  
  17.     cin>>N;  
  18.     for(int i=1; i<=N; i++)  
  19.     {  
  20.         cout<<"请输入多边形顶点"<<i<<"数值:"<<endl;  
  21.         cin>>v[i];    
  22.         m[i][1][0]=v[i];    
  23.         m[i][1][1]=v[i];   
  24.         cout<<"请输入多边形边"<<i<<"运算符:"<<endl;  
  25.         cin>>op[i];     
  26.     }   
  27.     cout<<"多边形游戏首次删除第"<<p<<"条边,结果为:"<<PloyMax(N,p)<<endl;   
  28.     return 0;  
  29. }  
  30.   
  31. void MinMax(int n,int i,int s,int j,int &minf,int &maxf)  
  32. {   
  33.     int e[5];  
  34.     int a=m[i][s][0],b=m[i][s][1];  
  35.     int r=(i+s-1)%n+1;//多边形的实际顶点编号  
  36.     int c=m[r][j-s][0],d=m[r][j-s][1];  
  37.   
  38.     if(op[r-1]=='+')  
  39.     {     
  40.         minf=a+c;  
  41.         maxf=b+d;  
  42.     }   
  43.     else  
  44.     {     
  45.         e[1]=a*c;  
  46.         e[2]=a*d;  
  47.         e[3]=b*c;   
  48.         e[4]=d*b;    
  49.         minf=e[1];    
  50.         maxf=e[1];   
  51.   
  52.         for(int r=2;r<N;r++)   
  53.         {     
  54.             if(minf>e[r])minf=e[r];  
  55.             if(maxf<e[r])maxf=e[r];  
  56.         }  
  57.     }  
  58. }  
  59.   
  60. int PloyMax(int n,int& p)  
  61. {   
  62.     int minf,maxf;  
  63.     for(int j=2;j<=n;j++) //迭代链的长度  
  64.     {  
  65.         for(int i=1;i<=n;i++)//迭代首次删掉第i条边  
  66.         {  
  67.             for(int s=1 ;s<j;s++) //迭代断开位置  
  68.             {      
  69.                 MinMax(n,i,s,j,minf,maxf);  
  70.                 if(m[i][j][0]>minf) m[i][j][0]=minf;   
  71.                 if(m[i][j][1]<maxf) m[i][j][1]=maxf;  
  72.             }    
  73.         }  
  74.     }  
  75.   
  76.     int temp=m[1][n][1];   
  77.     p=1;  
  78.   
  79.     for(int i=2 ;i<=n; i++)    
  80.     {      
  81.         if(temp<m[i][n][1])   
  82.         {  
  83.             temp=m[i][n][1];  
  84.             p=i;  
  85.         }  
  86.     }                    
  87.     return temp;  
  88. }   

     程序运行结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值