支持向量机(SVM)算法详解

支持向量机(SVM)算法详解

简介

支持向量机(Support Vector Machine, SVM)是一种用于分类和回归任务的监督学习算法。SVM的基本思想是找到一个最佳的超平面,以最大化类别之间的边界(间隔)。这种方法在处理高维数据和小样本数据时表现优异。

支持向量机模型

SVM模型通过一个超平面将数据集分成不同的类别。对于线性可分数据,SVM选择的超平面使得两类之间的间隔最大化。对于非线性可分数据,SVM通过核技巧(Kernel Trick)将数据映射到更高维空间,使其线性可分。

线性支持向量机

线性支持向量机的基本公式如下:

[ w \cdot x + b = 0 ]

其中:

  • ( w ) 是权重向量。
  • ( x ) 是输入特征向量。
  • ( b ) 是偏置项。

目标是最大化超平面到最近样本点的距离(间隔)。对于每个训练样本 ( (x_i, y_i) ),有以下约束条件:

[ y_i (w \cdot x_i + b) \geq 1 ]

非线性支持向量机

对于非线性数据,SVM使用核函数将数据映射到高维空间。在高维空间中,数据可能变得线性可分。常用的核函数包括:

  • 线性核(Linear Kernel):( K(x, x’) = x \cdot x’ )
  • 多项式核(Polynomial Kernel):( K(x, x’) = (x \cdot x’ + 1)^d )
  • 径向基核(RBF Kernel):( K(x, x’) = \exp(-\gamma |x - x’|^2) )
  • sigmoid核(Sigmoid Kernel):( K(x, x’) = \tanh(\alpha x \cdot x’ + c) )

SVM优化

SVM的优化目标是找到最佳的 ( w ) 和 ( b ) ,使得以下目标函数最小化:

[ \min \frac{1}{2} |w|^2 ]

同时满足约束条件:

[ y_i (w \cdot x_i + b) \geq 1 ]

松弛变量和软间隔

对于无法完全线性可分的数据,SVM引入松弛变量 ( \xi_i ) 以允许某些样本违反间隔约束。优化目标变为:

[ \min \frac{1}{2} |w|^2 + C \sum_{i=1}^{n} \xi_i ]

其中 ( C ) 是惩罚参数,用于控制间隔违反的程度。

实现示例

以下是使用Python和scikit-learn库实现支持向量机分类的示例:

import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东城十三

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值