perceptron与多层网络

背景1:神经网络的理论模型在1943年由相关学者提出来,并在1958年由frank rosenblatt剔除感知机(perceptron)模型,从数学上王城了对神经网络的精确建模。

背景2:感知机可以简单地理解为单层的神经网络,即没有隐藏层的神经网络。感知机首先对输入进行加权,再通过激活函数得到输出结果。

问题与解决方案:在神经网络的发展史上,一个很重要的问题是异或问题,异或运算直观来说就是如果两个输入的符号相同(同为正或同为负)则输出结果为0,否则输出结果为1。1969年,marvin minsky和seymour papert提出感知机无法模拟异或运算,因此需要新的神经网络模型来解决异或运算,这便是多层神经网络,即带有隐藏层的神经网络。

20171207

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值