背景1:神经网络的理论模型在1943年由相关学者提出来,并在1958年由frank rosenblatt剔除感知机(perceptron)模型,从数学上王城了对神经网络的精确建模。
背景2:感知机可以简单地理解为单层的神经网络,即没有隐藏层的神经网络。感知机首先对输入进行加权,再通过激活函数得到输出结果。
问题与解决方案:在神经网络的发展史上,一个很重要的问题是异或问题,异或运算直观来说就是如果两个输入的符号相同(同为正或同为负)则输出结果为0,否则输出结果为1。1969年,marvin minsky和seymour papert提出感知机无法模拟异或运算,因此需要新的神经网络模型来解决异或运算,这便是多层神经网络,即带有隐藏层的神经网络。
20171207